Enter an equation or problem
Camera input is not recognized!

Solution - Equations reducible to quadratic form

x=root[3]7=1.9129
x=root[3]{7}=1.9129
x=-root[3]4=-1.5874
x=-root[3]{4}=-1.5874

Step by Step Solution

Step by step solution :

Step  1  :

Equation at the end of step  1  :

  ((x6) -  3x3) -  28  = 0 

Step  2  :

Trying to factor by splitting the middle term

 2.1     Factoring  x6-3x3-28 

The first term is,  x6  its coefficient is  1 .
The middle term is,  -3x3  its coefficient is  -3 .
The last term, "the constant", is  -28 

Step-1 : Multiply the coefficient of the first term by the constant   1 • -28 = -28 

Step-2 : Find two factors of  -28  whose sum equals the coefficient of the middle term, which is   -3 .

     -28   +   1   =   -27
     -14   +   2   =   -12
     -7   +   4   =   -3   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -7  and  4 
                     x6 - 7x3 + 4x3 - 28

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x3 • (x3-7)
              Add up the last 2 terms, pulling out common factors :
                    4 • (x3-7)
Step-5 : Add up the four terms of step 4 :
                    (x3+4)  •  (x3-7)
             Which is the desired factorization

Trying to factor as a Sum of Cubes :

 2.2      Factoring:  x3+4 

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :
             (a+b) • (a2-ab+b2)
Proof  : (a+b) • (a2-ab+b2) =
    a3-a2b+ab2+ba2-b2a+b3 =
    a3+(a2b-ba2)+(ab2-b2a)+b3=
    a3+0+0+b3=
    a3+b3


Check :  4  is not a cube !!
Ruling : Binomial can not be factored as the difference of two perfect cubes

Polynomial Roots Calculator :

 2.3    Find roots (zeroes) of :       F(x) = x3+4
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  4.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      3.00   
     -2     1      -2.00      -4.00   
     -4     1      -4.00      -60.00   
     1     1      1.00      5.00   
     2     1      2.00      12.00   
     4     1      4.00      68.00   


Polynomial Roots Calculator found no rational roots

Trying to factor as a Difference of Cubes:

 2.4      Factoring:  x3-7 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  7  is not a cube !!
Ruling : Binomial can not be factored as the difference of two perfect cubes

Polynomial Roots Calculator :

 2.5    Find roots (zeroes) of :       F(x) = x3-7

     See theory in step 2.3
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -7.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,7

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -8.00   
     -7     1      -7.00      -350.00   
     1     1      1.00      -6.00   
     7     1      7.00      336.00   


Polynomial Roots Calculator found no rational roots

Equation at the end of step  2  :

  (x3 + 4) • (x3 - 7)  = 0 

Step  3  :

Theory - Roots of a product :

 3.1    A product of several terms equals zero. 

 
When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 
We shall now solve each term = 0 separately 

 
In other words, we are going to solve as many equations as there are terms in the product 

 
Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

 3.2      Solve  :    x3+4 = 0 

 
Subtract  4  from both sides of the equation : 
 
                     x3 = -4
When two things are equal, their cube roots are equal. Taking the cube root of the two sides of the equation we get:  
 
                     x  =  ∛ -4  

 
Negative numbers have real cube roots.
  -4 = ∛ -1• 4  = ∛ -1 • ∛ 4  =(-1)•∛ 4 

The equation has one real solution, a negative number This solution is  x = -∛4 = -1.5874

Solving a Single Variable Equation :

 3.3      Solve  :    x3-7 = 0 

 
Add  7  to both sides of the equation : 
 
                     x3 = 7
When two things are equal, their cube roots are equal. Taking the cube root of the two sides of the equation we get:  
 
                     x  =  ∛ 7  

 
The equation has one real solution
This solution is  x = ∛7 = 1.9129

Supplement : Solving Quadratic Equation Directly

Solving    x6-3x3-28  = 0   directly 

Earlier we factored this polynomial by splitting the middle term. let us now solve the equation by Completing The Square and by using the Quadratic Formula

Solving a Single Variable Equation :

Equations which are reducible to quadratic :

 4.1     Solve   x6-3x3-28 = 0

This equation is reducible to quadratic. What this means is that using a new variable, we can rewrite this equation as a quadratic equation Using  w , such that  w = x3  transforms the equation into :
 w2-3w-28 = 0

Solving this new equation using the quadratic formula we get two real solutions :
   7.0000  or  -4.0000

Now that we know the value(s) of  w , we can calculate  x  since  x  is  ∛ w  

Doing just this we discover that the solutions of
   x6-3x3-28 = 0
  are either : 
    x = ∛ 7.000 = 1.9129
   or:
  x = ∛-4.000 = -1.5874

Two solutions were found :

  1.  x = ∛7 = 1.9129
  2.  x = -∛4 = -1.5874

Why learn this

Latest Related Drills Solved