Enter an equation or problem
Camera input is not recognized!

Solution - Polynomial long division

x(x+5)2(x2)
x*(x+5)^2*(x-2)

Other Ways to Solve

Polynomial long division

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (((x4)+(8•(x3)))+5x2)-50x

Step  2  :

Equation at the end of step  2  :

  (((x4) +  23x3) +  5x2) -  50x

Step  3  :

Step  4  :

Pulling out like terms :

 4.1     Pull out like factors :

   x4 + 8x3 + 5x2 - 50x  = 

  x • (x3 + 8x2 + 5x - 50) 

Checking for a perfect cube :

 4.2    x3 + 8x2 + 5x - 50  is not a perfect cube

Trying to factor by pulling out :

 4.3      Factoring:  x3 + 8x2 + 5x - 50 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  5x - 50 
Group 2:  x3 + 8x2 

Pull out from each group separately :

Group 1:   (x - 10) • (5)
Group 2:   (x + 8) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 4.4    Find roots (zeroes) of :       F(x) = x3 + 8x2 + 5x - 50
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -50.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,5 ,10 ,25 ,50

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -48.00   
     -2     1      -2.00      -36.00   
     -5     1      -5.00      0.00    x + 5 
     -10     1     -10.00      -300.00   
     -25     1     -25.00     -10800.00   
     -50     1     -50.00     -105300.00   
     1     1      1.00      -36.00   
     2     1      2.00      0.00    x - 2 
     5     1      5.00      300.00   
     10     1      10.00      1800.00   
     25     1      25.00     20700.00   
     50     1      50.00     145200.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3 + 8x2 + 5x - 50 
can be divided by 2 different polynomials,including by  x - 2 

Polynomial Long Division :

 4.5    Polynomial Long Division
Dividing :  x3 + 8x2 + 5x - 50 
                              ("Dividend")
By         :    x - 2    ("Divisor")

dividend  x3 + 8x2 + 5x - 50 
- divisor * x2   x3 - 2x2     
remainder    10x2 + 5x - 50 
- divisor * 10x1     10x2 - 20x   
remainder      25x - 50 
- divisor * 25x0       25x - 50 
remainder       0

Quotient :  x2+10x+25  Remainder:  0 

Trying to factor by splitting the middle term

 4.6     Factoring  x2+10x+25 

The first term is,  x2  its coefficient is  1 .
The middle term is,  +10x  its coefficient is  10 .
The last term, "the constant", is  +25 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 25 = 25 

Step-2 : Find two factors of  25  whose sum equals the coefficient of the middle term, which is   10 .

     -25   +   -1   =   -26
     -5   +   -5   =   -10
     -1   +   -25   =   -26
     1   +   25   =   26
     5   +   5   =   10   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  5  and  5 
                     x2 + 5x + 5x + 25

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (x+5)
              Add up the last 2 terms, pulling out common factors :
                    5 • (x+5)
Step-5 : Add up the four terms of step 4 :
                    (x+5)  •  (x+5)
             Which is the desired factorization

Multiplying Exponential Expressions :

 4.7    Multiply  (x+5)  by  (x+5) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (x+5)  and the exponents are :
          1 , as  (x+5)  is the same number as  (x+5)1 
 and   1 , as  (x+5)  is the same number as  (x+5)1 
The product is therefore,  (x+5)(1+1) = (x+5)2 

Final result :

  x • (x + 5)2 • (x - 2)

Why learn this

Latest Related Drills Solved