Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

x=0.00000.8660i
x=0.0000-0.8660i
x=0.0000+0.8660i
x=0.0000+0.8660i

Step by Step Solution

Step by step solution :

Step  1  :

             9
 Simplify   ——
            16

Equation at the end of step  1  :

         3         9
  ((x4)+(—•(x2)))+——  = 0 
         2        16

Step  2  :

3 Simplify — 2

Equation at the end of step  2  :

            3            9
  ((x4) +  (— • x2)) +  ——  = 0 
            2           16

Step  3  :

Equation at the end of step  3  :

           3x2      9
  ((x4) +  ———) +  ——  = 0 
            2      16

Step  4  :

Rewriting the whole as an Equivalent Fraction :

 4.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  2  as the denominator :

           x4     x4 • 2
     x4 =  ——  =  ——————
           1        2   

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 4.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 x4 • 2 + 3x2     2x4 + 3x2
 ————————————  =  —————————
      2               2    

Equation at the end of step  4  :

  (2x4 + 3x2)     9
  ——————————— +  ——  = 0 
       2         16

Step  5  :

Step  6  :

Pulling out like terms :

 6.1     Pull out like factors :

   2x4 + 3x2  =   x2 • (2x2 + 3) 

Polynomial Roots Calculator :

 6.2    Find roots (zeroes) of :       F(x) = 2x2 + 3
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  2  and the Trailing Constant is  3.

 
The factor(s) are:

of the Leading Coefficient :  1,2
 
of the Trailing Constant :  1 ,3

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      5.00   
     -1     2      -0.50      3.50   
     -3     1      -3.00      21.00   
     -3     2      -1.50      7.50   
     1     1      1.00      5.00   
     1     2      0.50      3.50   
     3     1      3.00      21.00   
     3     2      1.50      7.50   


Polynomial Roots Calculator found no rational roots

Calculating the Least Common Multiple :

 6.3    Find the Least Common Multiple

      The left denominator is :       2 

      The right denominator is :       16 

        Number of times each prime factor
        appears in the factorization of:
 Prime 
 Factor 
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
2144
 Product of all 
 Prime Factors 
21616


      Least Common Multiple:
      16 

Calculating Multipliers :

 6.4    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 8

   Right_M = L.C.M / R_Deno = 1

Making Equivalent Fractions :

 6.5      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

   L. Mult. • L. Num.      x2 • (2x2+3) • 8
   ——————————————————  =   ————————————————
         L.C.M                    16       

   R. Mult. • R. Num.       9
   ——————————————————  =   ——
         L.C.M             16

Adding fractions that have a common denominator :

 6.6       Adding up the two equivalent fractions

 x2 • (2x2+3) • 8 + 9     16x4 + 24x2 + 9
 ————————————————————  =  ———————————————
          16                    16       

Trying to factor by splitting the middle term

 6.7     Factoring  16x4 + 24x2 + 9 

The first term is,  16x4  its coefficient is  16 .
The middle term is,  +24x2  its coefficient is  24 .
The last term, "the constant", is  +9 

Step-1 : Multiply the coefficient of the first term by the constant   16 • 9 = 144 

Step-2 : Find two factors of  144  whose sum equals the coefficient of the middle term, which is   24 .

     -144   +   -1   =   -145
     -72   +   -2   =   -74
     -48   +   -3   =   -51
     -36   +   -4   =   -40
     -24   +   -6   =   -30
     -18   +   -8   =   -26
     -16   +   -9   =   -25
     -12   +   -12   =   -24
     -9   +   -16   =   -25
     -8   +   -18   =   -26
     -6   +   -24   =   -30
     -4   +   -36   =   -40
     -3   +   -48   =   -51
     -2   +   -72   =   -74
     -1   +   -144   =   -145
     1   +   144   =   145
     2   +   72   =   74
     3   +   48   =   51
     4   +   36   =   40
     6   +   24   =   30
     8   +   18   =   26
     9   +   16   =   25
     12   +   12   =   24   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  12  and  12 
                     16x4 + 12x2 + 12x2 + 9

Step-4 : Add up the first 2 terms, pulling out like factors :
                    4x2 • (4x2+3)
              Add up the last 2 terms, pulling out common factors :
                    3 • (4x2+3)
Step-5 : Add up the four terms of step 4 :
                    (4x2+3)  •  (4x2+3)
             Which is the desired factorization

Polynomial Roots Calculator :

 6.8    Find roots (zeroes) of :       F(x) = 4x2+3

     See theory in step 6.2
In this case, the Leading Coefficient is  4  and the Trailing Constant is  3.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4
 
of the Trailing Constant :  1 ,3

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      7.00   
     -1     2      -0.50      4.00   
     -1     4      -0.25      3.25   
     -3     1      -3.00      39.00   
     -3     2      -1.50      12.00   
     -3     4      -0.75      5.25   
     1     1      1.00      7.00   
     1     2      0.50      4.00   
     1     4      0.25      3.25   
     3     1      3.00      39.00   
     3     2      1.50      12.00   
     3     4      0.75      5.25   


Polynomial Roots Calculator found no rational roots

Polynomial Roots Calculator :

 6.9    Find roots (zeroes) of :       F(x) = 4x2+3

     See theory in step 6.2
In this case, the Leading Coefficient is  4  and the Trailing Constant is  3.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4
 
of the Trailing Constant :  1 ,3

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      7.00   
     -1     2      -0.50      4.00   
     -1     4      -0.25      3.25   
     -3     1      -3.00      39.00   
     -3     2      -1.50      12.00   
     -3     4      -0.75      5.25   
     1     1      1.00      7.00   
     1     2      0.50      4.00   
     1     4      0.25      3.25   
     3     1      3.00      39.00   
     3     2      1.50      12.00   
     3     4      0.75      5.25   


Polynomial Roots Calculator found no rational roots

Multiplying Exponential Expressions :

 6.10    Multiply  (4x2+3)  by  (4x2+3) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (4x2+3)  and the exponents are :
          1 , as  (4x2+3)  is the same number as  (4x2+3)1 
 and   1 , as  (4x2+3)  is the same number as  (4x2+3)1 
The product is therefore,  (4x2+3)(1+1) = (4x2+3)2 

Equation at the end of step  6  :

  (4x2 + 3)2
  ——————————  = 0 
      16    

Step  7  :

When a fraction equals zero :

 7.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

  (4x2+3)2
  ———————— • 16 = 0 • 16
     16   

Now, on the left hand side, the  16  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   (4x2+3)2   = 0

Solving a Single Variable Equation :

 7.2      Solve  :    (4x2+3)2 = 0 

 
 (4x2+3) 2 represents, in effect, a product of 2 terms which is equal to zero

For the product to be zero, at least one of these terms must be zero. Since all these terms are equal to each other, it actually means :   4x2+3  = 0

Subtract  3  from both sides of the equation : 
 
                     4x2 = -3
Divide both sides of the equation by 4:
                     x2 = -3/4 = -0.750
 
 
When two things are equal, their square roots are equal. Taking the square root of the two sides of the equation we get:  
 
                     x  =  ± √ -3/4  

 
In Math,  i  is called the imaginary unit. It satisfies   i2  =-1. Both   i   and   -i   are the square roots of   -1 

Accordingly,  √ -3/4  =
                    √ -1• 3/4   =
                    √ -1 •√  3/4   =
                    i •  √ 3/4

The equation has no real solutions. It has 2 imaginary, or complex solutions.

                      x=  0.0000 + 0.8660
                      x=  0.0000 - 0.8660

Supplement : Solving Quadratic Equation Directly

Solving    16x4+24x2+9  = 0   directly 

Earlier we factored this polynomial by splitting the middle term. let us now solve the equation by Completing The Square and by using the Quadratic Formula

Solving a Single Variable Equation :

Equations which are reducible to quadratic :

 8.1     Solve   16x4+24x2+9 = 0

This equation is reducible to quadratic. What this means is that using a new variable, we can rewrite this equation as a quadratic equation Using  w , such that  w = x2  transforms the equation into :
 16w2+24w+9 = 0

Solving this new equation using the quadratic formula we get one solution :
   w = -0.75000010.5 

Two solutions were found :

  1.   x=  0.0000 - 0.8660
  2.   x=  0.0000 + 0.8660

Why learn this

Latest Related Drills Solved