Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

x=4
x=4
x=1
x=-1
x=0.00005.0000i
x=0.0000-5.0000i
x=0.0000+5.0000i
x=0.0000+5.0000i

Step by Step Solution

Step by step solution :

Step  1  :

Equation at the end of step  1  :

  ((((x4)-(3•(x3)))+(3•7x2))-75x)-100  = 0 

Step  2  :

Equation at the end of step  2  :

  ((((x4) -  3x3) +  (3•7x2)) -  75x) -  100  = 0 

Step  3  :

Polynomial Roots Calculator :

 3.1    Find roots (zeroes) of :       F(x) = x4-3x3+21x2-75x-100
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -100.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,5 ,10 ,20 ,25 ,50 ,100

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      0.00    x+1 
     -2     1      -2.00      174.00   
     -4     1      -4.00      984.00   
     -5     1      -5.00      1800.00   
     -10     1     -10.00     15750.00   
     -20     1     -20.00     193800.00   
     -25     1     -25.00     452400.00   
     -50     1     -50.00     6681150.00   
     -100     1     -100.00     103217400.00   
     1     1      1.00      -156.00   
     2     1      2.00      -174.00   
     4     1      4.00      0.00    x-4 
     5     1      5.00      300.00   
     10     1      10.00      8250.00   
     20     1      20.00     142800.00   
     25     1      25.00     354900.00   
     50     1      50.00     5923650.00   
     100     1     100.00     97202400.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x4-3x3+21x2-75x-100 
can be divided by 2 different polynomials,including by  x-4 

Polynomial Long Division :

 3.2    Polynomial Long Division
Dividing :  x4-3x3+21x2-75x-100 
                              ("Dividend")
By         :    x-4    ("Divisor")

dividend  x4 - 3x3 + 21x2 - 75x - 100 
- divisor * x3   x4 - 4x3       
remainder    x3 + 21x2 - 75x - 100 
- divisor * x2     x3 - 4x2     
remainder      25x2 - 75x - 100 
- divisor * 25x1       25x2 - 100x   
remainder        25x - 100 
- divisor * 25x0         25x - 100 
remainder         0

Quotient :  x3+x2+25x+25  Remainder:  0 

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = x3+x2+25x+25

     See theory in step 3.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  25.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,5 ,25

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      0.00    x+1 
     -5     1      -5.00      -200.00   
     -25     1     -25.00     -15600.00   
     1     1      1.00      52.00   
     5     1      5.00      300.00   
     25     1      25.00     16900.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3+x2+25x+25 
can be divided with  x+1 

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  x3+x2+25x+25 
                              ("Dividend")
By         :    x+1    ("Divisor")

dividend  x3 + x2 + 25x + 25 
- divisor * x2   x3 + x2     
remainder      25x + 25 
- divisor * 0x1         
remainder      25x + 25 
- divisor * 25x0       25x + 25 
remainder       0

Quotient :  x2+25  Remainder:  0 

Polynomial Roots Calculator :

 3.5    Find roots (zeroes) of :       F(x) = x2+25

     See theory in step 3.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  25.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,5 ,25

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      26.00   
     -5     1      -5.00      50.00   
     -25     1     -25.00      650.00   
     1     1      1.00      26.00   
     5     1      5.00      50.00   
     25     1      25.00      650.00   


Polynomial Roots Calculator found no rational roots

Equation at the end of step  3  :

  (x2 + 25) • (x + 1) • (x - 4)  = 0 

Step  4  :

Theory - Roots of a product :

 4.1    A product of several terms equals zero. 

 
When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 
We shall now solve each term = 0 separately 

 
In other words, we are going to solve as many equations as there are terms in the product 

 
Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

 4.2      Solve  :    x2+25 = 0 

 
Subtract  25  from both sides of the equation : 
 
                     x2 = -25
 
 
When two things are equal, their square roots are equal. Taking the square root of the two sides of the equation we get:  
 
                     x  =  ± √ -25  

 
In Math,  i  is called the imaginary unit. It satisfies   i2  =-1. Both   i   and   -i   are the square roots of   -1 

Accordingly,  √ -25  =
                    √ -1• 25   =
                    √ -1 •√  25   =
                    i •  √ 25

Can  √ 25 be simplified ?

Yes!   The prime factorization of  25   is
   5•5 
To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

25   =  √ 5•5   =
                ±  5 • √ 1   =
                ±  5


The equation has no real solutions. It has 2 imaginary, or complex solutions.

                      x=  0.0000 + 5.0000
                      x=  0.0000 - 5.0000

Solving a Single Variable Equation :

 4.3      Solve  :    x+1 = 0 

 
Subtract  1  from both sides of the equation : 
 
                     x = -1

Solving a Single Variable Equation :

 4.4      Solve  :    x-4 = 0 

 
Add  4  to both sides of the equation : 
 
                     x = 4

Four solutions were found :

  1.  x = 4
  2.  x = -1
  3.   x=  0.0000 - 5.0000
  4.   x=  0.0000 + 5.0000

Why learn this

Latest Related Drills Solved