Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(x512x3+4x-64)/(x)
(x^512x^3+4x-64)/(x)

Step by Step Solution

Step  1  :

            64
 Simplify   ——
            x 

Equation at the end of step  1  :

                    64
  (((x4)-(12•(x2)))-——)+4
                    x 

Step  2  :

Equation at the end of step  2  :

                         64     
  (((x4) -  (22•3x2)) -  ——) +  4
                         x      

Step  3  :

Rewriting the whole as an Equivalent Fraction :

 3.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  x  as the denominator :

                  x4 - 12x2     (x4 - 12x2) • x
     x4 - 12x2 =  —————————  =  ———————————————
                      1                x       

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Step  4  :

Pulling out like terms :

 4.1     Pull out like factors :

   x4 - 12x2  =   x2 • (x2 - 12) 

Trying to factor as a Difference of Squares :

 4.2      Factoring:  x2 - 12 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 12 is not a square !!

Ruling : Binomial can not be factored as the difference of two perfect squares.

Adding fractions that have a common denominator :

 4.3       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 x2 • (x2-12) • x - (64)     x5 - 12x3 - 64
 ———————————————————————  =  ——————————————
            x                      x       

Equation at the end of step  4  :

  (x5 - 12x3 - 64)    
  ———————————————— +  4
         x            

Step  5  :

Rewriting the whole as an Equivalent Fraction :

 5.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  x  as the denominator :

         4     4 • x
    4 =  —  =  —————
         1       x  

Polynomial Roots Calculator :

 5.2    Find roots (zeroes) of :       F(x) = x5 - 12x3 - 64
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -64.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,8 ,16 ,32 ,64

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -53.00   
     -2     1      -2.00      0.00    x + 2 
     -4     1      -4.00      -320.00   
     -8     1      -8.00     -26688.00   
     -16     1     -16.00     -999488.00   
     -32     1     -32.00     -33161280.00   
     -64     1     -64.00     -1070596160.00   
     1     1      1.00      -75.00   
     2     1      2.00      -128.00   
     4     1      4.00      192.00   
     8     1      8.00     26560.00   
     16     1      16.00     999360.00   
     32     1      32.00     33161152.00   
     64     1      64.00     1070596032.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x5 - 12x3 - 64 
can be divided with  x + 2 

Polynomial Long Division :

 5.3    Polynomial Long Division
Dividing :  x5 - 12x3 - 64 
                              ("Dividend")
By         :    x + 2    ("Divisor")

dividend  x5   - 12x3     - 64 
- divisor * x4   x5 + 2x4         
remainder  - 2x4 - 12x3     - 64 
- divisor * -2x3   - 2x4 - 4x3       
remainder    - 8x3     - 64 
- divisor * -8x2     - 8x3 - 16x2     
remainder        16x2   - 64 
- divisor * 16x1         16x2 + 32x   
remainder        - 32x - 64 
- divisor * -32x0         - 32x - 64 
remainder           0

Quotient :  x4-2x3-8x2+16x-32  Remainder:  0 

Polynomial Roots Calculator :

 5.4    Find roots (zeroes) of :       F(x) = x4-2x3-8x2+16x-32

     See theory in step 5.2
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -32.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,8 ,16 ,32

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -53.00   
     -2     1      -2.00      -64.00   
     -4     1      -4.00      160.00   
     -8     1      -8.00      4448.00   
     -16     1     -16.00     71392.00   
     -32     1     -32.00     1105376.00   
     1     1      1.00      -25.00   
     2     1      2.00      -32.00   
     4     1      4.00      32.00   
     8     1      8.00      2656.00   
     16     1      16.00     55520.00   
     32     1      32.00     975328.00   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 5.5       Adding up the two equivalent fractions

 (x4-2x3-8x2+16x-32) • (x+2) + 4 • x      x5 - 12x3 + 4x - 64
 ———————————————————————————————————  =  ———————————————————
                  x                               x         

Checking for a perfect cube :

 5.6    x5 - 12x3 + 4x - 64  is not a perfect cube

Trying to factor by pulling out :

 5.7      Factoring:  x5 - 12x3 + 4x - 64 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  4x - 64 
Group 2:  -12x3 + x5 

Pull out from each group separately :

Group 1:   (x - 16) • (4)
Group 2:   (x2 - 12) • (x3)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 5.8    Find roots (zeroes) of :       F(x) = x5 - 12x3 + 4x - 64

     See theory in step 5.2
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -64.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4 ,8 ,16 ,32 ,64

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -57.00   
     -2     1      -2.00      -8.00   
     -4     1      -4.00      -336.00   
     -8     1      -8.00     -26720.00   
     -16     1     -16.00     -999552.00   
     -32     1     -32.00     -33161408.00   
     -64     1     -64.00     -1070596416.00   
     1     1      1.00      -71.00   
     2     1      2.00      -120.00   
     4     1      4.00      208.00   
     8     1      8.00     26592.00   
     16     1      16.00     999424.00   
     32     1      32.00     33161280.00   
     64     1      64.00     1070596288.00   


Polynomial Roots Calculator found no rational roots

Final result :

  x5  12x3 + 4x - 64
  ———————————————————
           x         

Why learn this

Latest Related Drills Solved