Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(x+7)(x+2)(x3)
(x+7)*(x+2)*(x-3)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (((x3) +  (2•3x2)) -  13x) -  42

Step  2  :

Checking for a perfect cube :

 2.1    x3+6x2-13x-42  is not a perfect cube

Trying to factor by pulling out :

 2.2      Factoring:  x3+6x2-13x-42 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -13x-42 
Group 2:  6x2+x3 

Pull out from each group separately :

Group 1:   (13x+42) • (-1)
Group 2:   (x+6) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 2.3    Find roots (zeroes) of :       F(x) = x3+6x2-13x-42
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -42.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,3 ,6 ,7 ,14 ,21 ,42

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -24.00   
     -2     1      -2.00      0.00    x+2 
     -3     1      -3.00      24.00   
     -6     1      -6.00      36.00   
     -7     1      -7.00      0.00    x+7 
     -14     1     -14.00     -1428.00   
     -21     1     -21.00     -6384.00   
     -42     1     -42.00     -63000.00   
     1     1      1.00      -48.00   
     2     1      2.00      -36.00   
     3     1      3.00      0.00    x-3 
     6     1      6.00      312.00   
     7     1      7.00      504.00   
     14     1      14.00      3696.00   
     21     1      21.00     11592.00   
     42     1      42.00     84084.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3+6x2-13x-42 
can be divided by 3 different polynomials,including by  x-3 

Polynomial Long Division :

 2.4    Polynomial Long Division
Dividing :  x3+6x2-13x-42 
                              ("Dividend")
By         :    x-3    ("Divisor")

dividend  x3 + 6x2 - 13x - 42 
- divisor * x2   x3 - 3x2     
remainder    9x2 - 13x - 42 
- divisor * 9x1     9x2 - 27x   
remainder      14x - 42 
- divisor * 14x0       14x - 42 
remainder       0

Quotient :  x2+9x+14  Remainder:  0 

Trying to factor by splitting the middle term

 2.5     Factoring  x2+9x+14 

The first term is,  x2  its coefficient is  1 .
The middle term is,  +9x  its coefficient is  9 .
The last term, "the constant", is  +14 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 14 = 14 

Step-2 : Find two factors of  14  whose sum equals the coefficient of the middle term, which is   9 .

     -14   +   -1   =   -15
     -7   +   -2   =   -9
     -2   +   -7   =   -9
     -1   +   -14   =   -15
     1   +   14   =   15
     2   +   7   =   9   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  2  and  7 
                     x2 + 2x + 7x + 14

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (x+2)
              Add up the last 2 terms, pulling out common factors :
                    7 • (x+2)
Step-5 : Add up the four terms of step 4 :
                    (x+7)  •  (x+2)
             Which is the desired factorization

Final result :

  (x + 7) • (x + 2) • (x - 3)

Why learn this

Latest Related Drills Solved