Enter an equation or problem
Camera input is not recognized!

Solution - Polynomial long division

(x+12)(x3)2
(x+12)*(x-3)^2

Other Ways to Solve

Polynomial long division

Step by Step Solution

Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "x2"   was replaced by   "x^2".  1 more similar replacement(s).

Step  1  :

Equation at the end of step  1  :

  (((x3) +  (2•3x2)) -  63x) +  108

Step  2  :

Checking for a perfect cube :

 2.1    x3+6x2-63x+108  is not a perfect cube

Trying to factor by pulling out :

 2.2      Factoring:  x3+6x2-63x+108 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -63x+108 
Group 2:  6x2+x3 

Pull out from each group separately :

Group 1:   (7x-12) • (-9)
Group 2:   (x+6) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 2.3    Find roots (zeroes) of :       F(x) = x3+6x2-63x+108
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  108.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,9 ,12 ,18 ,27 ,36 , etc

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      176.00   
     -2     1      -2.00      250.00   
     -3     1      -3.00      324.00   
     -4     1      -4.00      392.00   
     -6     1      -6.00      486.00   
     -9     1      -9.00      432.00   
     -12     1     -12.00      0.00    x+12 
     -18     1     -18.00     -2646.00   
     -27     1     -27.00     -13500.00   
     -36     1     -36.00     -36504.00   
     1     1      1.00      52.00   
     2     1      2.00      14.00   
     3     1      3.00      0.00    x-3 
     4     1      4.00      16.00   
     6     1      6.00      162.00   
     9     1      9.00      756.00   
     12     1      12.00      1944.00   
     18     1      18.00      6750.00   
     27     1      27.00     22464.00   
     36     1      36.00     52272.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3+6x2-63x+108 
can be divided by 2 different polynomials,including by  x-3 

Polynomial Long Division :

 2.4    Polynomial Long Division
Dividing :  x3+6x2-63x+108 
                              ("Dividend")
By         :    x-3    ("Divisor")

dividend  x3 + 6x2 - 63x + 108 
- divisor * x2   x3 - 3x2     
remainder    9x2 - 63x + 108 
- divisor * 9x1     9x2 - 27x   
remainder    - 36x + 108 
- divisor * -36x0     - 36x + 108 
remainder       0

Quotient :  x2+9x-36  Remainder:  0 

Trying to factor by splitting the middle term

 2.5     Factoring  x2+9x-36 

The first term is,  x2  its coefficient is  1 .
The middle term is,  +9x  its coefficient is  9 .
The last term, "the constant", is  -36 

Step-1 : Multiply the coefficient of the first term by the constant   1 • -36 = -36 

Step-2 : Find two factors of  -36  whose sum equals the coefficient of the middle term, which is   9 .

     -36   +   1   =   -35
     -18   +   2   =   -16
     -12   +   3   =   -9
     -9   +   4   =   -5
     -6   +   6   =   0
     -4   +   9   =   5
     -3   +   12   =   9   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -3  and  12 
                     x2 - 3x + 12x - 36

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (x-3)
              Add up the last 2 terms, pulling out common factors :
                    12 • (x-3)
Step-5 : Add up the four terms of step 4 :
                    (x+12)  •  (x-3)
             Which is the desired factorization

Multiplying Exponential Expressions :

 2.6    Multiply  (x-3)  by  (x-3) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (x-3)  and the exponents are :
          1 , as  (x-3)  is the same number as  (x-3)1 
 and   1 , as  (x-3)  is the same number as  (x-3)1 
The product is therefore,  (x-3)(1+1) = (x-3)2 

Final result :

  (x + 12) • (x - 3)2

Why learn this

Latest Related Drills Solved