Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

(6x3-12x2+x+1)/(x2)
(6x^3-12x^2+x+1)/(x^2)

Step by Step Solution

Step  1  :

             1
 Simplify   ——
            x2

Equation at the end of step  1  :

        x          1
  ((((————-16)-x)+——)-5x)+4
      (x2)        x2

Step  2  :

x Simplify —— x2

Dividing exponential expressions :

 2.1    x1 divided by x2 = x(1 - 2) = x(-1) = 1/x1 = 1/x

Equation at the end of step  2  :

      1                  1            
  ((((— -  16) -  x) +  ——) -  5x) +  4
      x                 x2            

Step  3  :

Rewriting the whole as an Equivalent Fraction :

 3.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  x  as the denominator :

          16     16 • x
    16 =  ——  =  ——————
          1        x   

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 3.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 1 - (16 • x)     1 - 16x
 ————————————  =  ———————
      x              x   

Equation at the end of step  3  :

     (1 - 16x)           1            
  (((————————— -  x) +  ——) -  5x) +  4
         x              x2            

Step  4  :

Rewriting the whole as an Equivalent Fraction :

 4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  x  as the denominator :

         x     x • x
    x =  —  =  —————
         1       x  

Adding fractions that have a common denominator :

 4.2       Adding up the two equivalent fractions

 (1-16x) - (x • x)     -x2 - 16x + 1
 —————————————————  =  —————————————
         x                   x      

Equation at the end of step  4  :

    (-x2 - 16x + 1)     1            
  ((——————————————— +  ——) -  5x) +  4
           x           x2            

Step  5  :

Step  6  :

Pulling out like terms :

 6.1     Pull out like factors :

   -x2 - 16x + 1  =   -1 • (x2 + 16x - 1) 

Trying to factor by splitting the middle term

 6.2     Factoring  x2 + 16x - 1 

The first term is,  x2  its coefficient is  1 .
The middle term is,  +16x  its coefficient is  16 .
The last term, "the constant", is  -1 

Step-1 : Multiply the coefficient of the first term by the constant   1 • -1 = -1 

Step-2 : Find two factors of  -1  whose sum equals the coefficient of the middle term, which is   16 .

     -1   +   1   =   0


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Calculating the Least Common Multiple :

 6.3    Find the Least Common Multiple

      The left denominator is :       x 

      The right denominator is :       x2 

                  Number of times each Algebraic Factor
            appears in the factorization of:
    Algebraic    
    Factor    
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
 x 122


      Least Common Multiple:
      x2 

Calculating Multipliers :

 6.4    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = x

   Right_M = L.C.M / R_Deno = 1

Making Equivalent Fractions :

 6.5      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

   L. Mult. • L. Num.      (-x2-16x+1) • x
   ——————————————————  =   ———————————————
         L.C.M                   x2       

   R. Mult. • R. Num.       1
   ——————————————————  =   ——
         L.C.M             x2

Adding fractions that have a common denominator :

 6.6       Adding up the two equivalent fractions

 (-x2-16x+1) • x + 1     -x3 - 16x2 + x + 1
 ———————————————————  =  ——————————————————
         x2                      x2        

Equation at the end of step  6  :

   (-x3 - 16x2 + x + 1)           
  (———————————————————— -  5x) +  4
            x2                    

Step  7  :

Rewriting the whole as an Equivalent Fraction :

 7.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  x2  as the denominator :

          5x     5x • x2
    5x =  ——  =  ———————
          1        x2   

Checking for a perfect cube :

 7.2    -x3 - 16x2 + x + 1  is not a perfect cube

Trying to factor by pulling out :

 7.3      Factoring:  -x3 - 16x2 + x + 1 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x + 1 
Group 2:  -x3 - 16x2 

Pull out from each group separately :

Group 1:   (x + 1) • (1)
Group 2:   (x + 16) • (-x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 7.4    Find roots (zeroes) of :       F(x) = -x3 - 16x2 + x + 1
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  -1  and the Trailing Constant is  1.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -15.00   
     1     1      1.00      -15.00   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 7.5       Adding up the two equivalent fractions

 (-x3-16x2+x+1) - (5x • x2)     -6x3 - 16x2 + x + 1
 ——————————————————————————  =  ———————————————————
             x2                         x2         

Equation at the end of step  7  :

  (-6x3 - 16x2 + x + 1)    
  ————————————————————— +  4
           x2              

Step  8  :

Rewriting the whole as an Equivalent Fraction :

 8.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  x2  as the denominator :

         4     4 • x2
    4 =  —  =  ——————
         1       x2  

Checking for a perfect cube :

 8.2    -6x3 - 16x2 + x + 1  is not a perfect cube

Trying to factor by pulling out :

 8.3      Factoring:  -6x3 - 16x2 + x + 1 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x + 1 
Group 2:  -6x3 - 16x2 

Pull out from each group separately :

Group 1:   (x + 1) • (1)
Group 2:   (3x + 8) • (-2x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 8.4    Find roots (zeroes) of :       F(x) = -6x3 - 16x2 + x + 1

     See theory in step 7.4
In this case, the Leading Coefficient is  -6  and the Trailing Constant is  1.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6
 
of the Trailing Constant :  1

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -10.00   
     -1     2      -0.50      -2.75   
     -1     3      -0.33      -0.89   
     -1     6      -0.17      0.42   
     1     1      1.00      -20.00   
     1     2      0.50      -3.25   
     1     3      0.33      -0.67   
     1     6      0.17      0.69   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 8.5       Adding up the two equivalent fractions

 (-6x3-16x2+x+1) + 4 • x2     -6x3 - 12x2 + x + 1
 ————————————————————————  =  ———————————————————
            x2                        x2         

Checking for a perfect cube :

 8.6    -6x3 - 12x2 + x + 1  is not a perfect cube

Trying to factor by pulling out :

 8.7      Factoring:  -6x3 - 12x2 + x + 1 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x + 1 
Group 2:  -6x3 - 12x2 

Pull out from each group separately :

Group 1:   (x + 1) • (1)
Group 2:   (x + 2) • (-6x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 8.8    Find roots (zeroes) of :       F(x) = -6x3 - 12x2 + x + 1

     See theory in step 7.4
In this case, the Leading Coefficient is  -6  and the Trailing Constant is  1.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6
 
of the Trailing Constant :  1

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -6.00   
     -1     2      -0.50      -1.75   
     -1     3      -0.33      -0.44   
     -1     6      -0.17      0.53   
     1     1      1.00      -16.00   
     1     2      0.50      -2.25   
     1     3      0.33      -0.22   
     1     6      0.17      0.81   


Polynomial Roots Calculator found no rational roots

Final result :

  6x3 - 12x2 + x + 1
  ———————————————————
          x2         

Why learn this

Latest Related Drills Solved