Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

(+m*(6m2n+25m2+10))/10
(+m*(6m^2n+25m^2+10))/10

Step by Step Solution

Step  1  :

            m
 Simplify   —
            2

Equation at the end of step  1  :

         n             m
  (m-((3•—)•(m3)))+((5•—)•m2)
         5             2

Step  2  :

Multiplying exponential expressions :

 2.1    m1 multiplied by m2 = m(1 + 2) = m3

Equation at the end of step  2  :

         n         5m3
  (m-((3•—)•(m3)))+———
         5          2 

Step  3  :

n Simplify — 5

Equation at the end of step  3  :

              n            5m3
  (m -  ((3 • —) • m3)) +  ———
              5             2 

Step  4  :

Equation at the end of step  4  :

        3m3n     5m3
  (m -  ————) +  ———
         5        2 

Step  5  :

Rewriting the whole as an Equivalent Fraction :

 5.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  5  as the denominator :

          m     m • 5
     m =  —  =  —————
          1       5  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 5.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 m • 5 - (3m3n)     5m - 3m3n
 ——————————————  =  —————————
       5                5    

Equation at the end of step  5  :

  (5m - 3m3n)    5m3
  ——————————— +  ———
       5          2 

Step  6  :

Step  7  :

Pulling out like terms :

 7.1     Pull out like factors :

   5m - 3m3n  =   -m • (3m2n - 5) 

Trying to factor as a Difference of Squares :

 7.2      Factoring:  3m2n - 5 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  3  is not a square !!

Ruling : Binomial can not be factored as the
difference of two perfect squares

Calculating the Least Common Multiple :

 7.3    Find the Least Common Multiple

      The left denominator is :       5 

      The right denominator is :       2 

        Number of times each prime factor
        appears in the factorization of:
 Prime 
 Factor 
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
5101
2011
 Product of all 
 Prime Factors 
5210


      Least Common Multiple:
      10 

Calculating Multipliers :

 7.4    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 2

   Right_M = L.C.M / R_Deno = 5

Making Equivalent Fractions :

 7.5      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

   L. Mult. • L. Num.      -m • (3m2n-5) • 2
   ——————————————————  =   —————————————————
         L.C.M                    10        

   R. Mult. • R. Num.      5m3 • 5
   ——————————————————  =   ———————
         L.C.M               10   

Adding fractions that have a common denominator :

 7.6       Adding up the two equivalent fractions

 -m • (3m2n-5) • 2 + 5m3 • 5     -6m3n + 25m3 + 10m
 ———————————————————————————  =  ——————————————————
             10                          10        

Step  8  :

Pulling out like terms :

 8.1     Pull out like factors :

   -6m3n + 25m3 + 10m  =   -m • (6m2n - 25m2 - 10) 

Trying to factor a multi variable polynomial :

 8.2    Factoring    6m2n - 25m2 - 10 

Try to factor this multi-variable trinomial using trial and error 

 
Factorization fails

Final result :

  +m • (6m2n + 25m2 + 10)
  ———————————————————————
            10           

Why learn this

Latest Related Drills Solved