Enter an equation or problem
Camera input is not recognized!

Tiger Algebra Calculator

No solutions found

sad tiger

Try this:

We are constantly updating the types of the problems Tiger can solve, so the solutions you are looking for could be coming soon!

Other Ways to Solve

Tiger Algebra Calculator

Step by Step Solution

Step by step solution :

Step  1  :

Equation at the end of step  1  :

  (((75 • (x3)) +  (5•72x2)) +  108x) -  32  = 0 

Step  2  :

Equation at the end of step  2  :

  (((3•52x3) +  (5•72x2)) +  108x) -  32  = 0 

Step  3  :

Checking for a perfect cube :

 3.1    75x3+245x2+108x-32  is not a perfect cube

Trying to factor by pulling out :

 3.2      Factoring:  75x3+245x2+108x-32 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  108x-32 
Group 2:  75x3+245x2 

Pull out from each group separately :

Group 1:   (27x-8) • (4)
Group 2:   (15x+49) • (5x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = 75x3+245x2+108x-32
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  75  and the Trailing Constant is  -32.

 
The factor(s) are:

of the Leading Coefficient :  1,3 ,5 ,15 ,25 ,75
 
of the Trailing Constant :  1 ,2 ,4 ,8 ,16 ,32

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      30.00   
     -1     3      -0.33      -43.56   
     -1     5      -0.20      -44.40   
     -1     15      -0.07      -38.13   
     -1     25      -0.04      -35.93   
     -1     75      -0.01      -33.40   
     -2     1      -2.00      132.00   
     -2     3      -0.67      -17.33   
     -2     5      -0.40      -40.80   
     -2     15      -0.13      -42.22   
     -2     25      -0.08      -39.11   
     -2     75      -0.03      -34.71   
     -4     1      -4.00     -1344.00   
     -4     3      -1.33      81.78   
     -4     5      -0.80      0.00    5x+4 
     -4     15      -0.27      -44.80   
     -4     25      -0.16      -43.32   
     -4     75      -0.05      -37.07   
     -8     1      -8.00     -23616.00   
     -8     3      -2.67      0.00    3x+8 
     -8     5      -1.60      115.20   
     -8     15      -0.53      -31.29   
     -8     25      -0.32      -43.93   
     -8     75      -0.11      -40.82   
     -16     1     -16.00     -246240.00   
     -16     3      -5.33     -5016.89   
     -16     5      -3.20      -326.40   
     -16     15      -1.07      40.53   
     -16     25      -0.64      -20.43   
     -16     75      -0.21      -44.62   
     -32     1     -32.00     -2210208.00   
     -32     3     -10.67     -64330.67   
     -32     5      -6.40     -10348.80   
     -32     15      -2.13      124.44   
     -32     25      -1.28      73.88   
     -32     75      -0.43      -39.30   
     1     1      1.00      396.00   
     1     3      0.33      34.00   
     1     5      0.20      0.00    5x-1 
     1     15      0.07      -23.69   
     1     25      0.04      -27.28   
     1     75      0.01      -30.52   
     2     1      2.00      1764.00   
     2     3      0.67      171.11   
     2     5      0.40      55.20   
     2     15      0.13      -13.07   
     2     25      0.08      -21.75   
     2     75      0.03      -28.94   
     4     1      4.00      9120.00   
     4     3      1.33      725.33   
     4     5      0.80      249.60   
     4     15      0.27      15.64   
     4     25      0.16      -8.14   
     4     75      0.05      -25.53   
     8     1      8.00     54912.00   
     8     3      2.67      3420.44   
     8     5      1.60      1075.20   
     8     15      0.53      106.67   
     8     25      0.32      30.11   
     8     75      0.11      -17.60   
     16     1      16.00     371616.00   
     16     3      5.33     18890.67   
     16     5      3.20      5280.00   
     16     15      1.07      452.98   
     16     25      0.64      157.13   
     16     75      0.21      2.92   
     32     1      32.00     2711904.00   
     32     3      10.67     120017.78   
     32     5      6.40     30355.20   
     32     15      2.13      2041.60   
     32     25      1.28      664.93   
     32     75      0.43      64.51   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   75x3+245x2+108x-32 
can be divided by 3 different polynomials,including by  5x-1 

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  75x3+245x2+108x-32 
                              ("Dividend")
By         :    5x-1    ("Divisor")

dividend  75x3 + 245x2 + 108x - 32 
- divisor * 15x2   75x3 - 15x2     
remainder    260x2 + 108x - 32 
- divisor * 52x1     260x2 - 52x   
remainder      160x - 32 
- divisor * 32x0       160x - 32 
remainder       0

Quotient :  15x2+52x+32  Remainder:  0 

Trying to factor by splitting the middle term

 3.5     Factoring  15x2+52x+32 

The first term is,  15x2  its coefficient is  15 .
The middle term is,  +52x  its coefficient is  52 .
The last term, "the constant", is  +32 

Step-1 : Multiply the coefficient of the first term by the constant   15 • 32 = 480 

Step-2 : Find two factors of  480  whose sum equals the coefficient of the middle term, which is   52 .

     -480   +   -1   =   -481
     -240   +   -2   =   -242
     -160   +   -3   =   -163
     -120   +   -4   =   -124
     -96   +   -5   =   -101
     -80   +   -6   =   -86
     -60   +   -8   =   -68
     -48   +   -10   =   -58
     -40   +   -12   =   -52
     -32   +   -15   =   -47
     -30   +   -16   =   -46
     -24   +   -20   =   -44
     -20   +   -24   =   -44
     -16   +   -30   =   -46
     -15   +   -32   =   -47
     -12   +   -40   =   -52
     -10   +   -48   =   -58
     -8   +   -60   =   -68
     -6   +   -80   =   -86
     -5   +   -96   =   -101
     -4   +   -120   =   -124
     -3   +   -160   =   -163
     -2   +   -240   =   -242
     -1   +   -480   =   -481
     1   +   480   =   481
     2   +   240   =   242
     3   +   160   =   163
     4   +   120   =   124
     5   +   96   =   101
     6   +   80   =   86
     8   +   60   =   68
     10   +   48   =   58
     12   +   40   =   52   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  12  and  40 
                     15x2 + 12x + 40x + 32

Step-4 : Add up the first 2 terms, pulling out like factors :
                    3x • (5x+4)
              Add up the last 2 terms, pulling out common factors :
                    8 • (5x+4)
Step-5 : Add up the four terms of step 4 :
                    (3x+8)  •  (5x+4)
             Which is the desired factorization

Equation at the end of step  3  :

  (5x + 4) • (3x + 8) • (5x - 1)  = 0 

Step  4  :

Theory - Roots of a product :

 4.1    A product of several terms equals zero. 

 
When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 
We shall now solve each term = 0 separately 

 
In other words, we are going to solve as many equations as there are terms in the product 

 
Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

 4.2      Solve  :    5x+4 = 0 

 
Subtract  4  from both sides of the equation : 
 
                     5x = -4
Divide both sides of the equation by 5:
                     x = -4/5 = -0.800

Solving a Single Variable Equation :

 4.3      Solve  :    3x+8 = 0 

 
Subtract  8  from both sides of the equation : 
 
                     3x = -8
Divide both sides of the equation by 3:
                     x = -8/3 = -2.667

Solving a Single Variable Equation :

 4.4      Solve  :    5x-1 = 0 

 
Add  1  to both sides of the equation : 
 
                     5x = 1
Divide both sides of the equation by 5:
                     x = 1/5 = 0.200

Supplement : Solving Quadratic Equation Directly

Solving    15x2+52x+32  = 0   directly 

Earlier we factored this polynomial by splitting the middle term. let us now solve the equation by Completing The Square and by using the Quadratic Formula

Parabola, Finding the Vertex :

 5.1      Find the Vertex of   y = 15x2+52x+32

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 15 , is positive (greater than zero). 

 
Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions. 

 
Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex. 

 
For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is  -1.7333  

 
Plugging into the parabola formula  -1.7333  for  x  we can calculate the  y -coordinate : 
 
 y = 15.0 * -1.73 * -1.73 + 52.0 * -1.73 + 32.0
or   y = -13.067

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = 15x2+52x+32
Axis of Symmetry (dashed)  {x}={-1.73} 
Vertex at  {x,y} = {-1.73,-13.07} 
 x -Intercepts (Roots) :
Root 1 at  {x,y} = {-2.67, 0.00} 
Root 2 at  {x,y} = {-0.80, 0.00} 

Solve Quadratic Equation by Completing The Square

 5.2     Solving   15x2+52x+32 = 0 by Completing The Square .

 
Divide both sides of the equation by  15  to have 1 as the coefficient of the first term :
   x2+(52/15)x+(32/15) = 0

Subtract  32/15  from both side of the equation :
   x2+(52/15)x = -32/15

Now the clever bit: Take the coefficient of  x , which is  52/15 , divide by two, giving  26/15 , and finally square it giving  676/225 

Add  676/225  to both sides of the equation :
  On the right hand side we have :
   -32/15  +  676/225   The common denominator of the two fractions is  225   Adding  (-480/225)+(676/225)  gives  196/225 
  So adding to both sides we finally get :
   x2+(52/15)x+(676/225) = 196/225

Adding  676/225  has completed the left hand side into a perfect square :
   x2+(52/15)x+(676/225)  =
   (x+(26/15)) • (x+(26/15))  =
  (x+(26/15))2
Things which are equal to the same thing are also equal to one another. Since
   x2+(52/15)x+(676/225) = 196/225 and
   x2+(52/15)x+(676/225) = (x+(26/15))2
then, according to the law of transitivity,
   (x+(26/15))2 = 196/225

We'll refer to this Equation as  Eq. #5.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of
   (x+(26/15))2   is
   (x+(26/15))2/2 =
  (x+(26/15))1 =
   x+(26/15)


Now, applying the Square Root Principle to  Eq. #5.2.1  we get:
   x+(26/15) = 196/225

Subtract  26/15  from both sides to obtain:
   x = -26/15 + √ 196/225

Since a square root has two values, one positive and the other negative
   x2 + (52/15)x + (32/15) = 0
   has two solutions:
  x = -26/15 + √ 196/225
   or
  x = -26/15 - √ 196/225

Note that  √ 196/225 can be written as
   196  / √ 225   which is 14 / 15

Solve Quadratic Equation using the Quadratic Formula

 5.3     Solving    15x2+52x+32 = 0 by the Quadratic Formula .

 
According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :
                                     
            - B  ±  √ B2-4AC
  x =   ————————
                      2A

  In our case,  A   =     15
                      B   =    52
                      C   =   32

Accordingly,  B2  -  4AC   =
                     2704 - 1920 =
                     784

Applying the quadratic formula :

               -52 ± √ 784
   x  =    ——————
                      30

Can  √ 784 be simplified ?

Yes!   The prime factorization of  784   is
   2•2•2•2•7•7 
To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

784   =  √ 2•2•2•2•7•7   =2•2&bul

Why learn this

Terms and topics

    Latest Related Drills Solved