Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(-k*(3k2-18k+8)*(k-2))/4
(-k*(3k^2-18k+8)*(k-2))/4

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

                            k
  ((((6•(k3))-(3•(k2)))-((3•—)•(k3)))-23k2)+4k
                            4

Step  2  :

k Simplify — 4

Equation at the end of step  2  :

                            k
  ((((6•(k3))-(3•(k2)))-((3•—)•k3))-23k2)+4k
                            4

Step  3  :

Multiplying exponential expressions :

 3.1    k1 multiplied by k3 = k(1 + 3) = k4

Equation at the end of step  3  :

                        3k4
  ((((6•(k3))-(3•(k2)))-———)-23k2)+4k
                         4 

Step  4  :

Equation at the end of step  4  :

                   3k4
  ((((6•(k3))-3k2)-———)-23k2)+4k
                    4 

Step  5  :

Equation at the end of step  5  :

                        3k4                
  ((((2•3k3) -  3k2) -  ———) -  23k2) +  4k
                         4                 

Step  6  :

Rewriting the whole as an Equivalent Fraction :

 6.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  4  as the denominator :

                  6k3 - 3k2     (6k3 - 3k2) • 4
     6k3 - 3k2 =  —————————  =  ———————————————
                      1                4       

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Step  7  :

Pulling out like terms :

 7.1     Pull out like factors :

   6k3 - 3k2  =   3k2 • (2k - 1) 

Adding fractions that have a common denominator :

 7.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 3k2 • (2k-1) • 4 - (3k4)     -3k4 + 24k3 - 12k2 
 ————————————————————————  =  ——————————————————
            4                         4         

Equation at the end of step  7  :

   (-3k4 + 24k3 - 12k2)                
  (———————————————————— -  23k2) +  4k
            4                         

Step  8  :

Rewriting the whole as an Equivalent Fraction :

 8.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  4  as the denominator :

            23k2     23k2 • 4
    23k2 =  ————  =  ————————
             1          4    

Step  9  :

Pulling out like terms :

 9.1     Pull out like factors :

   -3k4 + 24k3 - 12k2  =   -3k2 • (k2 - 8k + 4) 

Trying to factor by splitting the middle term

 9.2     Factoring  k2 - 8k + 4 

The first term is,  k2  its coefficient is  1 .
The middle term is,  -8k  its coefficient is  -8 .
The last term, "the constant", is  +4 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 4 = 4 

Step-2 : Find two factors of  4  whose sum equals the coefficient of the middle term, which is   -8 .

     -4   +   -1   =   -5
     -2   +   -2   =   -4
     -1   +   -4   =   -5
     1   +   4   =   5
     2   +   2   =   4
     4   +   1   =   5


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Adding fractions that have a common denominator :

 9.3       Adding up the two equivalent fractions

 -3k2 • (k2-8k+4) - (23k2 • 4)      -3k4 + 24k3 - 44k2 
 —————————————————————————————  =  ——————————————————
               4                           4         

Equation at the end of step  9  :

  (-3k4 + 24k3 - 44k2)     
  ———————————————————— +  4k
           4              

Step  10  :

Rewriting the whole as an Equivalent Fraction :

 10.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  4  as the denominator :

          4k     4k • 4
    4k =  ——  =  ——————
          1        4   

Step  11  :

Pulling out like terms :

 11.1     Pull out like factors :

   -3k4 + 24k3 - 44k2  =   -k2 • (3k2 - 24k + 44) 

Trying to factor by splitting the middle term

 11.2     Factoring  3k2 - 24k + 44 

The first term is,  3k2  its coefficient is  3 .
The middle term is,  -24k  its coefficient is  -24 .
The last term, "the constant", is  +44 

Step-1 : Multiply the coefficient of the first term by the constant   3 • 44 = 132 

Step-2 : Find two factors of  132  whose sum equals the coefficient of the middle term, which is   -24 .

     -132   +   -1   =   -133
     -66   +   -2   =   -68
     -44   +   -3   =   -47
     -33   +   -4   =   -37
     -22   +   -6   =   -28
     -12   +   -11   =   -23


For tidiness, printing of 18 lines which failed to find two such factors, was suppressed

Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Adding fractions that have a common denominator :

 11.3       Adding up the two equivalent fractions

 -k2 • (3k2-24k+44) + 4k • 4     -3k4 + 24k3 - 44k2 + 16k 
 ———————————————————————————  =  ————————————————————————
              4                             4            

Step  12  :

Pulling out like terms :

 12.1     Pull out like factors :

   -3k4 + 24k3 - 44k2 + 16k  = 

  -k • (3k3 - 24k2 + 44k - 16) 

Checking for a perfect cube :

 12.2    3k3 - 24k2 + 44k - 16  is not a perfect cube

Trying to factor by pulling out :

 12.3      Factoring:  3k3 - 24k2 + 44k - 16 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  44k - 16 
Group 2:  -24k2 + 3k3 

Pull out from each group separately :

Group 1:   (11k - 4) • (4)
Group 2:   (k - 8) • (3k2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 12.4    Find roots (zeroes) of :       F(k) = 3k3 - 24k2 + 44k - 16
Polynomial Roots Calculator is a set of methods aimed at finding values of  k  for which   F(k)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  k  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  3  and the Trailing Constant is  -16.

 
The factor(s) are:

of the Leading Coefficient :  1,3
 
of the Trailing Constant :  1 ,2 ,4 ,8 ,16

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -87.00   
     -1     3      -0.33      -33.44   
     -2     1      -2.00      -224.00   
     -2     3      -0.67      -56.89   
     -4     1      -4.00      -768.00   
     -4     3      -1.33      -124.44   
     -8     1      -8.00     -3440.00   
     -8     3      -2.67      -360.89   
     -16     1     -16.00     -19152.00   
     -16     3      -5.33     -1388.44   
     1     1      1.00      7.00   
     1     3      0.33      -3.89   
     2     1      2.00      0.00    k - 2 
     2     3      0.67      3.56   
     4     1      4.00      -32.00   
     4     3      1.33      7.11   
     8     1      8.00      336.00   
     8     3      2.67      -12.44   
     16     1      16.00      6832.00   
     16     3      5.33      -8.89   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   3k3 - 24k2 + 44k - 16 
can be divided with  k - 2 

Polynomial Long Division :

 12.5    Polynomial Long Division
Dividing :  3k3 - 24k2 + 44k - 16 
                              ("Dividend")
By         :    k - 2    ("Divisor")

dividend  3k3 - 24k2 + 44k - 16 
- divisor * 3k2   3k3 - 6k2     
remainder  - 18k2 + 44k - 16 
- divisor * -18k1   - 18k2 + 36k   
remainder      8k - 16 
- divisor * 8k0       8k - 16 
remainder       0

Quotient :  3k2-18k+8  Remainder:  0 

Trying to factor by splitting the middle term

 12.6     Factoring  3k2-18k+8 

The first term is,  3k2  its coefficient is  3 .
The middle term is,  -18k  its coefficient is  -18 .
The last term, "the constant", is  +8 

Step-1 : Multiply the coefficient of the first term by the constant   3 • 8 = 24 

Step-2 : Find two factors of  24  whose sum equals the coefficient of the middle term, which is   -18 .

     -24   +   -1   =   -25
     -12   +   -2   =   -14
     -8   +   -3   =   -11
     -6   +   -4   =   -10
     -4   +   -6   =   -10
     -3   +   -8   =   -11
     -2   +   -12   =   -14
     -1   +   -24   =   -25
     1   +   24   =   25
     2   +   12   =   14
     3   +   8   =   11
     4   +   6   =   10
     6   +   4   =   10
     8   +   3   =   11
     12   +   2   =   14
     24   +   1   =   25


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  -k • (3k2 - 18k + 8) • (k - 2)
  ——————————————————————————————
                4               

Why learn this

Latest Related Drills Solved