Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(5x2)(x+1)(x3)
(5x-2)*(x+1)*(x-3)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (((5 • (x3)) -  (22•3x2)) -  11x) +  6

Step  2  :

Equation at the end of step  2  :

  ((5x3 -  (22•3x2)) -  11x) +  6

Step  3  :

Checking for a perfect cube :

 3.1    5x3-12x2-11x+6  is not a perfect cube

Trying to factor by pulling out :

 3.2      Factoring:  5x3-12x2-11x+6 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -11x+6 
Group 2:  -12x2+5x3 

Pull out from each group separately :

Group 1:   (-11x+6) • (1) = (11x-6) • (-1)
Group 2:   (5x-12) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = 5x3-12x2-11x+6
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  5  and the Trailing Constant is  6.

 
The factor(s) are:

of the Leading Coefficient :  1,5
 
of the Trailing Constant :  1 ,2 ,3 ,6

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      0.00    x+1 
     -1     5      -0.20      7.68   
     -2     1      -2.00      -60.00   
     -2     5      -0.40      8.16   
     -3     1      -3.00      -204.00   
     -3     5      -0.60      7.20   
     -6     1      -6.00     -1440.00   
     -6     5      -1.20      -6.72   
     1     1      1.00      -12.00   
     1     5      0.20      3.36   
     2     1      2.00      -24.00   
     2     5      0.40      0.00    5x-2 
     3     1      3.00      0.00    x-3 
     3     5      0.60      -3.84   
     6     1      6.00      588.00   
     6     5      1.20      -15.84   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   5x3-12x2-11x+6 
can be divided by 3 different polynomials,including by  x-3 

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  5x3-12x2-11x+6 
                              ("Dividend")
By         :    x-3    ("Divisor")

dividend  5x3 - 12x2 - 11x + 6 
- divisor * 5x2   5x3 - 15x2     
remainder    3x2 - 11x + 6 
- divisor * 3x1     3x2 - 9x   
remainder    - 2x + 6 
- divisor * -2x0     - 2x + 6 
remainder       0

Quotient :  5x2+3x-2  Remainder:  0 

Trying to factor by splitting the middle term

 3.5     Factoring  5x2+3x-2 

The first term is,  5x2  its coefficient is  5 .
The middle term is,  +3x  its coefficient is  3 .
The last term, "the constant", is  -2 

Step-1 : Multiply the coefficient of the first term by the constant   5 • -2 = -10 

Step-2 : Find two factors of  -10  whose sum equals the coefficient of the middle term, which is   3 .

     -10   +   1   =   -9
     -5   +   2   =   -3
     -2   +   5   =   3   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -2  and  5 
                     5x2 - 2x + 5x - 2

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (5x-2)
              Add up the last 2 terms, pulling out common factors :
                     1 • (5x-2)
Step-5 : Add up the four terms of step 4 :
                    (x+1)  •  (5x-2)
             Which is the desired factorization

Final result :

  (5x - 2) • (x + 1) • (x - 3)

Why learn this

Latest Related Drills Solved