Enter an equation or problem
Camera input is not recognized!

Solution - Simplification or other simple results

(7p4+3)2
(7p^4+3)^2

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  ((49 • (p8)) +  (2•3•7p4)) +  9

Step  2  :

Equation at the end of step  2  :

  (72p8 +  (2•3•7p4)) +  9

Step  3  :

Trying to factor by splitting the middle term

 3.1     Factoring  49p8+42p4+9 

The first term is,  49p8  its coefficient is  49 .
The middle term is,  +42p4  its coefficient is  42 .
The last term, "the constant", is  +9 

Step-1 : Multiply the coefficient of the first term by the constant   49 • 9 = 441 

Step-2 : Find two factors of  441  whose sum equals the coefficient of the middle term, which is   42 .

     -441   +   -1   =   -442
     -147   +   -3   =   -150
     -63   +   -7   =   -70
     -49   +   -9   =   -58
     -21   +   -21   =   -42
     -9   +   -49   =   -58
     -7   +   -63   =   -70
     -3   +   -147   =   -150
     -1   +   -441   =   -442
     1   +   441   =   442
     3   +   147   =   150
     7   +   63   =   70
     9   +   49   =   58
     21   +   21   =   42   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  21  and  21 
                     49p8 + 21p4 + 21p4 + 9

Step-4 : Add up the first 2 terms, pulling out like factors :
                    7p4 • (7p4+3)
              Add up the last 2 terms, pulling out common factors :
                    3 • (7p4+3)
Step-5 : Add up the four terms of step 4 :
                    (7p4+3)  •  (7p4+3)
             Which is the desired factorization

Polynomial Roots Calculator :

 3.2    Find roots (zeroes) of :       F(p) = 7p4+3
Polynomial Roots Calculator is a set of methods aimed at finding values of  p  for which   F(p)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  p  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  7  and the Trailing Constant is  3.

 
The factor(s) are:

of the Leading Coefficient :  1,7
 
of the Trailing Constant :  1 ,3

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      10.00   
     -1     7      -0.14      3.00   
     -3     1      -3.00      570.00   
     -3     7      -0.43      3.24   
     1     1      1.00      10.00   
     1     7      0.14      3.00   
     3     1      3.00      570.00   
     3     7      0.43      3.24   


Polynomial Roots Calculator found no rational roots

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(p) = 7p4+3

     See theory in step 3.2
In this case, the Leading Coefficient is  7  and the Trailing Constant is  3.

 
The factor(s) are:

of the Leading Coefficient :  1,7
 
of the Trailing Constant :  1 ,3

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      10.00   
     -1     7      -0.14      3.00   
     -3     1      -3.00      570.00   
     -3     7      -0.43      3.24   
     1     1      1.00      10.00   
     1     7      0.14      3.00   
     3     1      3.00      570.00   
     3     7      0.43      3.24   


Polynomial Roots Calculator found no rational roots

Multiplying Exponential Expressions :

 3.4    Multiply  (7p4+3)  by  (7p4+3) 

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (7p4+3)  and the exponents are :
          1 , as  (7p4+3)  is the same number as  (7p4+3)1 
 and   1 , as  (7p4+3)  is the same number as  (7p4+3)1 
The product is therefore,  (7p4+3)(1+1) = (7p4+3)2 

Final result :

  (7p4 + 3)2

Why learn this

Terms and topics

Latest Related Drills Solved