Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

(-2*(4h3+5h2-2h-2))/(h2)
(-2*(4h^3+5h^2-2h-2))/(h^2)

Step by Step Solution

Step  1  :

             h
 Simplify   ——
            h2

Dividing exponential expressions :

 1.1    h1 divided by h2 = h(1 - 2) = h(-1) = 1/h1 = 1/h

Equation at the end of step  1  :

        4            1
  ((((————-4h)-5)+(4•—))-4h)-5
      (h2)           h

Step  2  :

4 Simplify —— h2

Equation at the end of step  2  :

       4                 4            
  ((((—— -  4h) -  5) +  —) -  4h) -  5
      h2                 h            

Step  3  :

Rewriting the whole as an Equivalent Fraction :

 3.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  h2  as the denominator :

          4h     4h • h2
    4h =  ——  =  ———————
          1        h2   

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 3.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 4 - (4h • h2)     4 - 4h3
 —————————————  =  ———————
      h2             h2   

Equation at the end of step  3  :

     (4 - 4h3)          4            
  (((————————— -  5) +  —) -  4h) -  5
        h2              h            

Step  4  :

Rewriting the whole as an Equivalent Fraction :

 4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  h2  as the denominator :

         5     5 • h2
    5 =  —  =  ——————
         1       h2  

Step  5  :

Pulling out like terms :

 5.1     Pull out like factors :

   4 - 4h3  =   -4 • (h3 - 1) 

Trying to factor as a Difference of Cubes:

 5.2      Factoring:  h3 - 1 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  1  is the cube of   1 
Check :  h3 is the cube of   h1

Factorization is :
             (h - 1)  •  (h2 + h + 1) 

Trying to factor by splitting the middle term

 5.3     Factoring  h2 + h + 1 

The first term is,  h2  its coefficient is  1 .
The middle term is,  +h  its coefficient is  1 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 1 = 1 

Step-2 : Find two factors of  1  whose sum equals the coefficient of the middle term, which is   1 .

     -1   +   -1   =   -2
     1   +   1   =   2


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Adding fractions that have a common denominator :

 5.4       Adding up the two equivalent fractions

 -4 • (h-1) • (h2+h+1) - (5 • h2)     -4h3 - 5h2 + 4
 ————————————————————————————————  =  ——————————————
                h2                          h2      

Equation at the end of step  5  :

    (-4h3 - 5h2 + 4)    4            
  ((———————————————— +  —) -  4h) -  5
           h2           h            

Step  6  :

Step  7  :

Pulling out like terms :

 7.1     Pull out like factors :

   -4h3 - 5h2 + 4  =   -1 • (4h3 + 5h2 - 4) 

Polynomial Roots Calculator :

 7.2    Find roots (zeroes) of :       F(h) = 4h3 + 5h2 - 4
Polynomial Roots Calculator is a set of methods aimed at finding values of  h  for which   F(h)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  h  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  4  and the Trailing Constant is  -4.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4
 
of the Trailing Constant :  1 ,2 ,4

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -3.00   
     -1     2      -0.50      -3.25   
     -1     4      -0.25      -3.75   
     -2     1      -2.00      -16.00   
     -4     1      -4.00      -180.00   
     1     1      1.00      5.00   
     1     2      0.50      -2.25   
     1     4      0.25      -3.62   
     2     1      2.00      48.00   
     4     1      4.00      332.00   


Polynomial Roots Calculator found no rational roots

Calculating the Least Common Multiple :

 7.3    Find the Least Common Multiple

      The left denominator is :       h2 

      The right denominator is :       h 

                  Number of times each Algebraic Factor
            appears in the factorization of:
    Algebraic    
    Factor    
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
 h 212


      Least Common Multiple:
      h2 

Calculating Multipliers :

 7.4    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = h

Making Equivalent Fractions :

 7.5      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

   L. Mult. • L. Num.      (-4h3-5h2+4)
   ——————————————————  =   ————————————
         L.C.M                  h2     

   R. Mult. • R. Num.      4 • h
   ——————————————————  =   —————
         L.C.M              h2  

Adding fractions that have a common denominator :

 7.6       Adding up the two equivalent fractions

 (-4h3-5h2+4) + 4 • h     -4h3 - 5h2 + 4h + 4
 ————————————————————  =  ———————————————————
          h2                      h2         

Equation at the end of step  7  :

   (-4h3 - 5h2 + 4h + 4)           
  (————————————————————— -  4h) -  5
            h2                     

Step  8  :

Rewriting the whole as an Equivalent Fraction :

 8.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  h2  as the denominator :

          4h     4h • h2
    4h =  ——  =  ———————
          1        h2   

Checking for a perfect cube :

 8.2    -4h3 - 5h2 + 4h + 4  is not a perfect cube

Trying to factor by pulling out :

 8.3      Factoring:  -4h3 - 5h2 + 4h + 4 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -5h2 + 4 
Group 2:  -4h3 + 4h 

Pull out from each group separately :

Group 1:   (-5h2 + 4) • (1) = (5h2 - 4) • (-1)
Group 2:   (h2 - 1) • (-4h)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 8.4    Find roots (zeroes) of :       F(h) = -4h3 - 5h2 + 4h + 4

     See theory in step 7.2
In this case, the Leading Coefficient is  -4  and the Trailing Constant is  4.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4
 
of the Trailing Constant :  1 ,2 ,4

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -1.00   
     -1     2      -0.50      1.25   
     -1     4      -0.25      2.75   
     -2     1      -2.00      8.00   
     -4     1      -4.00      164.00   
     1     1      1.00      -1.00   
     1     2      0.50      4.25   
     1     4      0.25      4.62   
     2     1      2.00      -40.00   
     4     1      4.00      -316.00   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 8.5       Adding up the two equivalent fractions

 (-4h3-5h2+4h+4) - (4h • h2)     -8h3 - 5h2 + 4h + 4
 ———————————————————————————  =  ———————————————————
             h2                          h2         

Equation at the end of step  8  :

  (-8h3 - 5h2 + 4h + 4)    
  ————————————————————— -  5
           h2              

Step  9  :

Rewriting the whole as an Equivalent Fraction :

 9.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  h2  as the denominator :

         5     5 • h2
    5 =  —  =  ——————
         1       h2  

Checking for a perfect cube :

 9.2    -8h3 - 5h2 + 4h + 4  is not a perfect cube

Trying to factor by pulling out :

 9.3      Factoring:  -8h3 - 5h2 + 4h + 4 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -5h2 + 4 
Group 2:  -8h3 + 4h 

Pull out from each group separately :

Group 1:   (-5h2 + 4) • (1) = (5h2 - 4) • (-1)
Group 2:   (2h2 - 1) • (-4h)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 9.4    Find roots (zeroes) of :       F(h) = -8h3 - 5h2 + 4h + 4

     See theory in step 7.2
In this case, the Leading Coefficient is  -8  and the Trailing Constant is  4.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4 ,8
 
of the Trailing Constant :  1 ,2 ,4

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      3.00   
     -1     2      -0.50      1.75   
     -1     4      -0.25      2.81   
     -1     8      -0.12      3.44   
     -2     1      -2.00      40.00   
     -4     1      -4.00      420.00   
     1     1      1.00      -5.00   
     1     2      0.50      3.75   
     1     4      0.25      4.56   
     1     8      0.12      4.41   
     2     1      2.00      -72.00   
     4     1      4.00      -572.00   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 9.5       Adding up the two equivalent fractions

 (-8h3-5h2+4h+4) - (5 • h2)     -8h3 - 10h2 + 4h + 4
 ——————————————————————————  =  ————————————————————
             h2                          h2         

Step  10  :

Pulling out like terms :

 10.1     Pull out like factors :

   -8h3 - 10h2 + 4h + 4  = 

  -2 • (4h3 + 5h2 - 2h - 2) 

Checking for a perfect cube :

 10.2    4h3 + 5h2 - 2h - 2  is not a perfect cube

Trying to factor by pulling out :

 10.3      Factoring:  4h3 + 5h2 - 2h - 2 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -2h - 2 
Group 2:  4h3 + 5h2 

Pull out from each group separately :

Group 1:   (h + 1) • (-2)
Group 2:   (4h + 5) • (h2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 10.4    Find roots (zeroes) of :       F(h) = 4h3 + 5h2 - 2h - 2

     See theory in step 7.2
In this case, the Leading Coefficient is  4  and the Trailing Constant is  -2.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4
 
of the Trailing Constant :  1 ,2

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      1.00   
     -1     2      -0.50      -0.25   
     -1     4      -0.25      -1.25   
     -2     1      -2.00      -10.00   
     1     1      1.00      5.00   
     1     2      0.50      -1.25   
     1     4      0.25      -2.12   
     2     1      2.00      46.00   


Polynomial Roots Calculator found no rational roots

Final result :

  -2 • (4h3 + 5h2 - 2h - 2)
  —————————————————————————
             h2            

Why learn this

Latest Related Drills Solved