Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(3x+1)(x+4)(x6)
(3x+1)*(x+4)*(x-6)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (((3 • (x3)) -  5x2) -  74x) -  24

Step  2  :

Equation at the end of step  2  :

  ((3x3 -  5x2) -  74x) -  24

Step  3  :

Checking for a perfect cube :

 3.1    3x3-5x2-74x-24  is not a perfect cube

Trying to factor by pulling out :

 3.2      Factoring:  3x3-5x2-74x-24 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -74x-24 
Group 2:  3x3-5x2 

Pull out from each group separately :

Group 1:   (37x+12) • (-2)
Group 2:   (3x-5) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = 3x3-5x2-74x-24
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  3  and the Trailing Constant is  -24.

 
The factor(s) are:

of the Leading Coefficient :  1,3
 
of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,8 ,12 ,24

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      42.00   
     -1     3      -0.33      0.00    3x+1 
     -2     1      -2.00      80.00   
     -2     3      -0.67      22.22   
     -3     1      -3.00      72.00   
     -4     1      -4.00      0.00    x+4 
     -4     3      -1.33      58.67   
     -6     1      -6.00      -408.00   
     -8     1      -8.00     -1288.00   
     -8     3      -2.67      80.89   
     -12     1     -12.00     -5040.00   
     -24     1     -24.00     -42600.00   
     1     1      1.00      -100.00   
     1     3      0.33      -49.11   
     2     1      2.00      -168.00   
     2     3      0.67      -74.67   
     3     1      3.00      -210.00   
     4     1      4.00      -208.00   
     4     3      1.33      -124.44   
     6     1      6.00      0.00    x-6 
     8     1      8.00      600.00   
     8     3      2.67      -200.00   
     12     1      12.00      3552.00   
     24     1      24.00     36792.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   3x3-5x2-74x-24 
can be divided by 3 different polynomials,including by  x-6 

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  3x3-5x2-74x-24 
                              ("Dividend")
By         :    x-6    ("Divisor")

dividend  3x3 - 5x2 - 74x - 24 
- divisor * 3x2   3x3 - 18x2     
remainder    13x2 - 74x - 24 
- divisor * 13x1     13x2 - 78x   
remainder      4x - 24 
- divisor * 4x0       4x - 24 
remainder       0

Quotient :  3x2+13x+4  Remainder:  0 

Trying to factor by splitting the middle term

 3.5     Factoring  3x2+13x+4 

The first term is,  3x2  its coefficient is  3 .
The middle term is,  +13x  its coefficient is  13 .
The last term, "the constant", is  +4 

Step-1 : Multiply the coefficient of the first term by the constant   3 • 4 = 12 

Step-2 : Find two factors of  12  whose sum equals the coefficient of the middle term, which is   13 .

     -12   +   -1   =   -13
     -6   +   -2   =   -8
     -4   +   -3   =   -7
     -3   +   -4   =   -7
     -2   +   -6   =   -8
     -1   +   -12   =   -13
     1   +   12   =   13   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  1  and  12 
                     3x2 + 1x + 12x + 4

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (3x+1)
              Add up the last 2 terms, pulling out common factors :
                    4 • (3x+1)
Step-5 : Add up the four terms of step 4 :
                    (x+4)  •  (3x+1)
             Which is the desired factorization

Final result :

  (3x + 1) • (x + 4) • (x - 6)

Why learn this

Latest Related Drills Solved