Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

(x22)(x+2)(2x7)
(x^2-2)*(x+2)*(2x-7)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  ((((2•(x4))-(3•(x3)))-(2•32x2))+6x)+28

Step  2  :

Equation at the end of step  2  :

  ((((2•(x4))-3x3)-(2•32x2))+6x)+28

Step  3  :

Equation at the end of step  3  :

  (((2x4 -  3x3) -  (2•32x2)) +  6x) +  28

Step  4  :

Polynomial Roots Calculator :

 4.1    Find roots (zeroes) of :       F(x) = 2x4-3x3-18x2+6x+28
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  2  and the Trailing Constant is  28.

 
The factor(s) are:

of the Leading Coefficient :  1,2
 
of the Trailing Constant :  1 ,2 ,4 ,7 ,14 ,28

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      9.00   
     -1     2      -0.50      21.00   
     -2     1      -2.00      0.00    x+2 
     -4     1      -4.00      420.00   
     -7     1      -7.00      4935.00   
     -7     2      -3.50      215.25   
     -14     1     -14.00     81480.00   
     -28     1     -28.00     1280916.00   
     1     1      1.00      15.00   
     1     2      0.50      26.25   
     2     1      2.00      -24.00   
     4     1      4.00      84.00   
     7     1      7.00      2961.00   
     7     2      3.50      0.00    2x-7 
     14     1      14.00     65184.00   
     28     1      28.00     1149540.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   2x4-3x3-18x2+6x+28 
can be divided by 2 different polynomials,including by  2x-7 

Polynomial Long Division :

 4.2    Polynomial Long Division
Dividing :  2x4-3x3-18x2+6x+28 
                              ("Dividend")
By         :    2x-7    ("Divisor")

dividend  2x4 - 3x3 - 18x2 + 6x + 28 
- divisor * x3   2x4 - 7x3       
remainder    4x3 - 18x2 + 6x + 28 
- divisor * 2x2     4x3 - 14x2     
remainder    - 4x2 + 6x + 28 
- divisor * -2x1     - 4x2 + 14x   
remainder      - 8x + 28 
- divisor * -4x0       - 8x + 28 
remainder         0

Quotient :  x3+2x2-2x-4  Remainder:  0 

Polynomial Roots Calculator :

 4.3    Find roots (zeroes) of :       F(x) = x3+2x2-2x-4

     See theory in step 4.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -4.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,4

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -1.00   
     -2     1      -2.00      0.00    x+2 
     -4     1      -4.00      -28.00   
     1     1      1.00      -3.00   
     2     1      2.00      8.00   
     4     1      4.00      84.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3+2x2-2x-4 
can be divided with  x+2 

Polynomial Long Division :

 4.4    Polynomial Long Division
Dividing :  x3+2x2-2x-4 
                              ("Dividend")
By         :    x+2    ("Divisor")

dividend  x3 + 2x2 - 2x - 4 
- divisor * x2   x3 + 2x2     
remainder    - 2x - 4 
- divisor * 0x1         
remainder    - 2x - 4 
- divisor * -2x0     - 2x - 4 
remainder       0

Quotient :  x2-2  Remainder:  0 

Trying to factor as a Difference of Squares :

 4.5      Factoring:  x2-2 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 2 is not a square !!

Ruling : Binomial can not be factored as the difference of two perfect squares.

Final result :

  (x2 - 2) • (x + 2) • (2x - 7)

Why learn this

Latest Related Drills Solved