Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

(-3x3+12x2-11)/(x2)
(-3x^3+12x^2-11)/(x^2)

Step by Step Solution

Step  1  :

            12
 Simplify   ——
            x2

Equation at the end of step  1  :

         1            12
  (((x+————)+x)-12)-((——+5x)-24)
       (x2)           x2

Step  2  :

Rewriting the whole as an Equivalent Fraction :

 2.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  x2  as the denominator :

          5x     5x • x2
    5x =  ——  =  ———————
          1        x2   

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 2.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 12 + 5x • x2     5x3 + 12
 ————————————  =  ————————
      x2             x2   

Equation at the end of step  2  :

         1           (5x3+12)
  (((x+————)+x)-12)-(————————-24)
       (x2)             x2   

Step  3  :

Rewriting the whole as an Equivalent Fraction :

 3.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  x2  as the denominator :

          24     24 • x2
    24 =  ——  =  ———————
          1        x2   

Trying to factor as a Sum of Cubes :

 3.2      Factoring:  5x3 + 12 

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :
             (a+b) • (a2-ab+b2)
Proof  : (a+b) • (a2-ab+b2) =
    a3-a2b+ab2+ba2-b2a+b3 =
    a3+(a2b-ba2)+(ab2-b2a)+b3=
    a3+0+0+b3=
    a3+b3


Check :  5  is not a cube !!

Ruling : Binomial can not be factored as the difference of two perfect cubes

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = 5x3 + 12
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  5  and the Trailing Constant is  12.

 
The factor(s) are:

of the Leading Coefficient :  1,5
 
of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,12

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      7.00   
     -1     5      -0.20      11.96   
     -2     1      -2.00      -28.00   
     -2     5      -0.40      11.68   
     -3     1      -3.00      -123.00   


Note - For tidiness, printing of 19 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 3.4       Adding up the two equivalent fractions

 (5x3+12) - (24 • x2)     5x3 - 24x2 + 12
 ————————————————————  =  ———————————————
          x2                    x2       

Equation at the end of step  3  :

         1          (5x3-24x2+12)
  (((x+————)+x)-12)-—————————————
       (x2)              x2      

Step  4  :

1 Simplify —— x2

Equation at the end of step  4  :

           1                  (5x3 - 24x2 + 12)
  (((x +  ——) +  x) -  12) -  —————————————————
          x2                         x2        

Step  5  :

Rewriting the whole as an Equivalent Fraction :

 5.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  x2  as the denominator :

          x     x • x2
     x =  —  =  ——————
          1       x2  

Adding fractions that have a common denominator :

 5.2       Adding up the two equivalent fractions

 x • x2 + 1     x3 + 1
 ——————————  =  ——————
     x2           x2  

Equation at the end of step  5  :

    (x3 + 1)                 (5x3 - 24x2 + 12)
  ((———————— +  x) -  12) -  —————————————————
       x2                           x2        

Step  6  :

Rewriting the whole as an Equivalent Fraction :

 6.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  x2  as the denominator :

         x     x • x2
    x =  —  =  ——————
         1       x2  

Trying to factor as a Sum of Cubes :

 6.2      Factoring:  x3 + 1 

Check :  1  is the cube of   1 
Check :  x3 is the cube of   x1

Factorization is :
             (x + 1)  •  (x2 - x + 1) 

Trying to factor by splitting the middle term

 6.3     Factoring  x2 - x + 1 

The first term is,  x2  its coefficient is  1 .
The middle term is,  -x  its coefficient is  -1 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 1 = 1 

Step-2 : Find two factors of  1  whose sum equals the coefficient of the middle term, which is   -1 .

     -1   +   -1   =   -2
     1   +   1   =   2


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Adding fractions that have a common denominator :

 6.4       Adding up the two equivalent fractions

 (x+1) • (x2-x+1) + x • x2     2x3 + 1
 —————————————————————————  =  ———————
            x2                   x2   

Equation at the end of step  6  :

   (2x3 + 1)           (5x3 - 24x2 + 12)
  (————————— -  12) -  —————————————————
      x2                      x2        

Step  7  :

Rewriting the whole as an Equivalent Fraction :

 7.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  x2  as the denominator :

          12     12 • x2
    12 =  ——  =  ———————
          1        x2   

Trying to factor as a Sum of Cubes :

 7.2      Factoring:  2x3 + 1 

Check :  2  is not a cube !!

Ruling : Binomial can not be factored as the difference of two perfect cubes

Polynomial Roots Calculator :

 7.3    Find roots (zeroes) of :       F(x) = 2x3 + 1

     See theory in step 3.3
In this case, the Leading Coefficient is  2  and the Trailing Constant is  1.

 
The factor(s) are:

of the Leading Coefficient :  1,2
 
of the Trailing Constant :  1

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -1.00   
     -1     2      -0.50      0.75   
     1     1      1.00      3.00   
     1     2      0.50      1.25   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 7.4       Adding up the two equivalent fractions

 (2x3+1) - (12 • x2)     2x3 - 12x2 + 1
 ———————————————————  =  ——————————————
         x2                    x2      

Equation at the end of step  7  :

  (2x3 - 12x2 + 1)    (5x3 - 24x2 + 12)
  ———————————————— -  —————————————————
         x2                  x2        

Step  8  :

Polynomial Roots Calculator :

 8.1    Find roots (zeroes) of :       F(x) = 2x3-12x2+1

     See theory in step 3.3
In this case, the Leading Coefficient is  2  and the Trailing Constant is  1.

 
The factor(s) are:

of the Leading Coefficient :  1,2
 
of the Trailing Constant :  1

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -13.00   
     -1     2      -0.50      -2.25   
     1     1      1.00      -9.00   
     1     2      0.50      -1.75   


Polynomial Roots Calculator found no rational roots

Polynomial Roots Calculator :

 8.2    Find roots (zeroes) of :       F(x) = 5x3-24x2+12

     See theory in step 3.3
In this case, the Leading Coefficient is  5  and the Trailing Constant is  12.

 
The factor(s) are:

of the Leading Coefficient :  1,5
 
of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,12

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -17.00   
     -1     5      -0.20      11.00   
     -2     1      -2.00      -124.00   
     -2     5      -0.40      7.84   
     -3     1      -3.00      -339.00   


Note - For tidiness, printing of 19 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Adding fractions which have a common denominator :

 8.3       Adding fractions which have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 (2x3-12x2+1) - ((5x3-24x2+12))      -3x3 + 12x2 - 11
 ——————————————————————————————  =  ————————————————
               x2                          x2       

Step  9  :

Pulling out like terms :

 9.1     Pull out like factors :

   -3x3 + 12x2 - 11  =   -1 • (3x3 - 12x2 + 11) 

Polynomial Roots Calculator :

 9.2    Find roots (zeroes) of :       F(x) = 3x3 - 12x2 + 11

     See theory in step 3.3
In this case, the Leading Coefficient is  3  and the Trailing Constant is  11.

 
The factor(s) are:

of the Leading Coefficient :  1,3
 
of the Trailing Constant :  1 ,11

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -4.00   
     -1     3      -0.33      9.56   
     -11     1     -11.00     -5434.00   
     -11     3      -3.67      -298.22   
     1     1      1.00      2.00   
     1     3      0.33      9.78   
     11     1      11.00      2552.00   
     11     3      3.67      -2.44   


Polynomial Roots Calculator found no rational roots

Final result :

  -3x3 + 12x2 - 11
  ————————————————
         x2       

Why learn this

Latest Related Drills Solved