Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

(8x3-10x2+x+5)/(x2)
(8x^3-10x^2+x+5)/(x^2)

Step by Step Solution

Step  1  :

             5
 Simplify   ——
            x2

Equation at the end of step  1  :

      x            5
  ((————+4x)-5)+((——+4x)-5)
    (x2)          x2

Step  2  :

Rewriting the whole as an Equivalent Fraction :

 2.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  x2  as the denominator :

          4x     4x • x2
    4x =  ——  =  ———————
          1        x2   

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 2.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 5 + 4x • x2     4x3 + 5
 ———————————  =  ———————
     x2            x2   

Equation at the end of step  2  :

      x          (4x3+5)
  ((————+4x)-5)+(———————-5)
    (x2)           x2   

Step  3  :

Rewriting the whole as an Equivalent Fraction :

 3.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  x2  as the denominator :

         5     5 • x2
    5 =  —  =  ——————
         1       x2  

Trying to factor as a Sum of Cubes :

 3.2      Factoring:  4x3 + 5 

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :
             (a+b) • (a2-ab+b2)
Proof  : (a+b) • (a2-ab+b2) =
    a3-a2b+ab2+ba2-b2a+b3 =
    a3+(a2b-ba2)+(ab2-b2a)+b3=
    a3+0+0+b3=
    a3+b3


Check :  4  is not a cube !!

Ruling : Binomial can not be factored as the difference of two perfect cubes

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = 4x3 + 5
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  4  and the Trailing Constant is  5.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4
 
of the Trailing Constant :  1 ,5

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      1.00   
     -1     2      -0.50      4.50   
     -1     4      -0.25      4.94   
     -5     1      -5.00      -495.00   
     -5     2      -2.50      -57.50   
     -5     4      -1.25      -2.81   
     1     1      1.00      9.00   
     1     2      0.50      5.50   
     1     4      0.25      5.06   
     5     1      5.00      505.00   
     5     2      2.50      67.50   
     5     4      1.25      12.81   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 3.4       Adding up the two equivalent fractions

 (4x3+5) - (5 • x2)     4x3 - 5x2 + 5
 ——————————————————  =  —————————————
         x2                  x2      

Equation at the end of step  3  :

      x         (4x3-5x2+5)
  ((————+4x)-5)+———————————
    (x2)            x2     

Step  4  :

x Simplify —— x2

Dividing exponential expressions :

 4.1    x1 divided by x2 = x(1 - 2) = x(-1) = 1/x1 = 1/x

Equation at the end of step  4  :

    1                 (4x3 - 5x2 + 5)
  ((— +  4x) -  5) +  ———————————————
    x                       x2       

Step  5  :

Rewriting the whole as an Equivalent Fraction :

 5.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  x  as the denominator :

          4x     4x • x
    4x =  ——  =  ——————
          1        x   

Adding fractions that have a common denominator :

 5.2       Adding up the two equivalent fractions

 1 + 4x • x     4x2 + 1
 ——————————  =  ———————
     x             x   

Equation at the end of step  5  :

   (4x2 + 1)          (4x3 - 5x2 + 5)
  (————————— -  5) +  ———————————————
       x                    x2       

Step  6  :

Rewriting the whole as an Equivalent Fraction :

 6.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  x  as the denominator :

         5     5 • x
    5 =  —  =  —————
         1       x  

Polynomial Roots Calculator :

 6.2    Find roots (zeroes) of :       F(x) = 4x2 + 1

     See theory in step 3.3
In this case, the Leading Coefficient is  4  and the Trailing Constant is  1.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4
 
of the Trailing Constant :  1

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      5.00   
     -1     2      -0.50      2.00   
     -1     4      -0.25      1.25   
     1     1      1.00      5.00   
     1     2      0.50      2.00   
     1     4      0.25      1.25   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 6.3       Adding up the two equivalent fractions

 (4x2+1) - (5 • x)     4x2 - 5x + 1
 —————————————————  =  ————————————
         x                  x      

Equation at the end of step  6  :

  (4x2 - 5x + 1)    (4x3 - 5x2 + 5)
  —————————————— +  ———————————————
        x                 x2       

Step  7  :

Trying to factor by splitting the middle term

 7.1     Factoring  4x2-5x+1 

The first term is,  4x2  its coefficient is  4 .
The middle term is,  -5x  its coefficient is  -5 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   4 • 1 = 4 

Step-2 : Find two factors of  4  whose sum equals the coefficient of the middle term, which is   -5 .

     -4   +   -1   =   -5   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -4  and  -1 
                     4x2 - 4x - 1x - 1

Step-4 : Add up the first 2 terms, pulling out like factors :
                    4x • (x-1)
              Add up the last 2 terms, pulling out common factors :
                     1 • (x-1)
Step-5 : Add up the four terms of step 4 :
                    (4x-1)  •  (x-1)
             Which is the desired factorization

Polynomial Roots Calculator :

 7.2    Find roots (zeroes) of :       F(x) = 4x3-5x2+5

     See theory in step 3.3
In this case, the Leading Coefficient is  4  and the Trailing Constant is  5.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4
 
of the Trailing Constant :  1 ,5

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -4.00   
     -1     2      -0.50      3.25   
     -1     4      -0.25      4.62   
     -5     1      -5.00      -620.00   
     -5     2      -2.50      -88.75   
     -5     4      -1.25      -10.62   
     1     1      1.00      4.00   
     1     2      0.50      4.25   
     1     4      0.25      4.75   
     5     1      5.00      380.00   
     5     2      2.50      36.25   
     5     4      1.25      5.00   


Polynomial Roots Calculator found no rational roots

Calculating the Least Common Multiple :

 7.3    Find the Least Common Multiple

      The left denominator is :       x 

      The right denominator is :       x2 

                  Number of times each Algebraic Factor
            appears in the factorization of:
    Algebraic    
    Factor    
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
 x 122


      Least Common Multiple:
      x2 

Calculating Multipliers :

 7.4    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = x

   Right_M = L.C.M / R_Deno = 1

Making Equivalent Fractions :

 7.5      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

   L. Mult. • L. Num.      (x-1) • (4x-1) • x
   ——————————————————  =   ——————————————————
         L.C.M                     x2        

   R. Mult. • R. Num.      (4x3-5x2+5)
   ——————————————————  =   ———————————
         L.C.M                 x2     

Adding fractions that have a common denominator :

 7.6       Adding up the two equivalent fractions

 (x-1) • (4x-1) • x + (4x3-5x2+5)     8x3 - 10x2 + x + 5
 ————————————————————————————————  =  ——————————————————
                x2                            x2        

Checking for a perfect cube :

 7.7    8x3 - 10x2 + x + 5  is not a perfect cube

Trying to factor by pulling out :

 7.8      Factoring:  8x3 - 10x2 + x + 5 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  x + 5 
Group 2:  8x3 - 10x2 

Pull out from each group separately :

Group 1:   (x + 5) • (1)
Group 2:   (4x - 5) • (2x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 7.9    Find roots (zeroes) of :       F(x) = 8x3 - 10x2 + x + 5

     See theory in step 3.3
In this case, the Leading Coefficient is  8  and the Trailing Constant is  5.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,4 ,8
 
of the Trailing Constant :  1 ,5

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -14.00   
     -1     2      -0.50      1.00   
     -1     4      -0.25      4.00   
     -1     8      -0.12      4.70   
     -5     1      -5.00     -1250.00   
     -5     2      -2.50      -185.00   
     -5     4      -1.25      -27.50   
     -5     8      -0.62      -1.48   
     1     1      1.00      4.00   
     1     2      0.50      4.00   
     1     4      0.25      4.75   
     1     8      0.12      4.98   
     5     1      5.00      760.00   
     5     2      2.50      70.00   
     5     4      1.25      6.25   
     5     8      0.62      3.67   


Polynomial Roots Calculator found no rational roots

Final result :

  8x3 - 10x2 + x + 5
  ——————————————————
          x2        

Why learn this

Latest Related Drills Solved