Enter an equation or problem
Camera input is not recognized!

Solution - Factoring binomials using the difference of squares

(k2-6)/(5*(2k6-3))
(k^2-6)/(5*(2k^6-3))

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  (((k12)+(19•(k6)))+88)    ((k4)-(6•(k2)))   
  ——————————————————————•—————————————————————
   ((5•(k8))+(40•(k2)))  (((2•(k12))+19k6)-33)

Step  2  :

Equation at the end of step  2  :

  (((k12)+(19•(k6)))+88)  ((k4)-(6•(k2)))
  ——————————————————————•————————————————
   ((5•(k8))+(40•(k2)))  ((2k12+19k6)-33)

Step  3  :

Equation at the end of step  3  :

  (((k12)+(19•(k6)))+88) ((k4)-(2•3k2))
  ——————————————————————•——————————————
   ((5•(k8))+(40•(k2)))  (2k12+19k6-33)

Step  4  :

                k4 - 6k2    
 Simplify   ————————————————
            2k12 + 19k6 - 33

Step  5  :

Pulling out like terms :

 5.1     Pull out like factors :

   k4 - 6k2  =   k2 • (k2 - 6) 

Trying to factor as a Difference of Squares :

 5.2      Factoring:  k2 - 6 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 6 is not a square !!

Ruling : Binomial can not be factored as the difference of two perfect squares.

Trying to factor by splitting the middle term

 5.3     Factoring  2k12 + 19k6 - 33 

The first term is,  2k12  its coefficient is  2 .
The middle term is,  +19k6  its coefficient is  19 .
The last term, "the constant", is  -33 

Step-1 : Multiply the coefficient of the first term by the constant   2 • -33 = -66 

Step-2 : Find two factors of  -66  whose sum equals the coefficient of the middle term, which is   19 .

     -66   +   1   =   -65
     -33   +   2   =   -31
     -22   +   3   =   -19
     -11   +   6   =   -5
     -6   +   11   =   5
     -3   +   22   =   19   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -3  and  22 
                     2k12 - 3k6 + 22k6 - 33

Step-4 : Add up the first 2 terms, pulling out like factors :
                    k6 • (2k6-3)
              Add up the last 2 terms, pulling out common factors :
                    11 • (2k6-3)
Step-5 : Add up the four terms of step 4 :
                    (k6+11)  •  (2k6-3)
             Which is the desired factorization

Trying to factor as a Difference of Squares :

 5.4      Factoring:  2k6-3 

Check :  2  is not a square !!

Ruling : Binomial can not be factored as the
difference of two perfect squares

Polynomial Roots Calculator :

 5.5    Find roots (zeroes) of :       F(k) = 2k6-3
Polynomial Roots Calculator is a set of methods aimed at finding values of  k  for which   F(k)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  k  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  2  and the Trailing Constant is  -3.

 
The factor(s) are:

of the Leading Coefficient :  1,2
 
of the Trailing Constant :  1 ,3

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -1.00   
     -1     2      -0.50      -2.97   
     -3     1      -3.00      1455.00   
     -3     2      -1.50      19.78   
     1     1      1.00      -1.00   
     1     2      0.50      -2.97   
     3     1      3.00      1455.00   
     3     2      1.50      19.78   


Polynomial Roots Calculator found no rational roots

Trying to factor as a Sum of Cubes :

 5.6      Factoring:  k6+11 

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :
             (a+b) • (a2-ab+b2)
Proof  : (a+b) • (a2-ab+b2) =
    a3-a2b+ab2+ba2-b2a+b3 =
    a3+(a2b-ba2)+(ab2-b2a)+b3=
    a3+0+0+b3=
    a3+b3


Check :  11  is not a cube !!
Ruling : Binomial can not be factored as the difference of two perfect cubes

Polynomial Roots Calculator :

 5.7    Find roots (zeroes) of :       F(k) = k6+11

     See theory in step 5.5
In this case, the Leading Coefficient is  1  and the Trailing Constant is  11.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,11

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      12.00   
     -11     1     -11.00     1771572.00   
     1     1      1.00      12.00   
     11     1      11.00     1771572.00   


Polynomial Roots Calculator found no rational roots

Equation at the end of step  5  :

  (((k12)+(19•(k6)))+88)    k2•(k2-6)   
  ——————————————————————•———————————————
   ((5•(k8))+(40•(k2)))  (2k6-3)•(k6+11)

Step  6  :

Equation at the end of step  6  :

  (((k12)+(19•(k6)))+88)    k2•(k2-6)   
  ——————————————————————•———————————————
   ((5•(k8))+(23•5k2))   (2k6-3)•(k6+11)

Step  7  :

Equation at the end of step  7  :

  (((k12)+(19•(k6)))+88)    k2•(k2-6)   
  ——————————————————————•———————————————
      (5k8+(23•5k2))     (2k6-3)•(k6+11)

Step  8  :

Equation at the end of step  8  :

  (((k12)+19k6)+88)    k2•(k2-6)   
  —————————————————•———————————————
     (5k8+40k2)     (2k6-3)•(k6+11)

Step  9  :

            k12 + 19k6 + 88
 Simplify   ———————————————
              5k8 + 40k2   

Step  10  :

Pulling out like terms :

 10.1     Pull out like factors :

   5k8 + 40k2  =   5k2 • (k6 + 8) 

Trying to factor by splitting the middle term

 10.2     Factoring  k12 + 19k6 + 88 

The first term is,  k12  its coefficient is  1 .
The middle term is,  +19k6  its coefficient is  19 .
The last term, "the constant", is  +88 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 88 = 88 

Step-2 : Find two factors of  88  whose sum equals the coefficient of the middle term, which is   19 .

     -88   +   -1   =   -89
     -44   +   -2   =   -46
     -22   +   -4   =   -26
     -11   +   -8   =   -19
     -8   +   -11   =   -19
     -4   +   -22   =   -26
     -2   +   -44   =   -46
     -1   +   -88   =   -89
     1   +   88   =   89
     2   +   44   =   46
     4   +   22   =   26
     8   +   11   =   19   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  8  and  11 
                     k12 + 8k6 + 11k6 + 88

Step-4 : Add up the first 2 terms, pulling out like factors :
                    k6 • (k6+8)
              Add up the last 2 terms, pulling out common factors :
                    11 • (k6+8)
Step-5 : Add up the four terms of step 4 :
                    (k6+11)  •  (k6+8)
             Which is the desired factorization

Trying to factor as a Sum of Cubes :

 10.3      Factoring:  k6+11 

Check :  11  is not a cube !!
Ruling : Binomial can not be factored as the difference of two perfect cubes

Polynomial Roots Calculator :

 10.4    Find roots (zeroes) of :       F(k) = k6+11

     See theory in step 5.5
In this case, the Leading Coefficient is  1  and the Trailing Constant is  11.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,11

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      12.00   
     -11     1     -11.00     1771572.00   
     1     1      1.00      12.00   
     11     1      11.00     1771572.00   


Polynomial Roots Calculator found no rational roots

Trying to factor as a Sum of Cubes :

 10.5      Factoring:  k6+8 

Check :  8  is the cube of   2 
Check :  k6 is the cube of   k2

Factorization is :
             (k2 + 2)  •  (k4 - 2k2 + 4) 

Trying to factor as a Sum of Cubes :

 10.6      Factoring:  k6 + 11 

Check :  11  is not a cube !!
Ruling : Binomial can not be factored as the difference of two perfect cubes

Polynomial Roots Calculator :

 10.7    Find roots (zeroes) of :       F(k) = k2 + 2

     See theory in step 5.5
In this case, the Leading Coefficient is  1  and the Trailing Constant is  2.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      3.00   
     -2     1      -2.00      6.00   
     1     1      1.00      3.00   
     2     1      2.00      6.00   


Polynomial Roots Calculator found no rational roots

Trying to factor by splitting the middle term

 10.8     Factoring  k4 - 2k2 + 4 

The first term is,  k4  its coefficient is  1 .
The middle term is,  -2k2  its coefficient is  -2 .
The last term, "the constant", is  +4 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 4 = 4 

Step-2 : Find two factors of  4  whose sum equals the coefficient of the middle term, which is   -2 .

     -4   +   -1   =   -5
     -2   +   -2   =   -4
     -1   +   -4   =   -5
     1   +   4   =   5
     2   +   2   =   4
     4   +   1   =   5


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Trying to factor as a Sum of Cubes :

 10.9      Factoring:  k6+8 

Check :  8  is the cube of   2 
Check :  k6 is the cube of   k2

Factorization is :
             (k2 + 2)  •  (k4 - 2k2 + 4) 

Polynomial Roots Calculator :

 10.10    Find roots (zeroes) of :       F(k) = k2 + 2

     See theory in step 5.5
In this case, the Leading Coefficient is  1  and the Trailing Constant is  2.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      3.00   
     -2     1      -2.00      6.00   
     1     1      1.00      3.00   
     2     1      2.00      6.00   


Polynomial Roots Calculator found no rational roots

Trying to factor by splitting the middle term

 10.11     Factoring  k4 - 2k2 + 4 

The first term is,  k4  its coefficient is  1 .
The middle term is,  -2k2  its coefficient is  -2 .
The last term, "the constant", is  +4 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 4 = 4 

Step-2 : Find two factors of  4  whose sum equals the coefficient of the middle term, which is   -2 .

     -4   +   -1   =   -5
     -2   +   -2   =   -4
     -1   +   -4   =   -5
     1   +   4   =   5
     2   +   2   =   4
     4   +   1   =   5


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Canceling Out :

 10.12    Cancel out  (k2+2)  which appears on both sides of the fraction line.

Canceling Out :

 10.13    Cancel out  (k4-2k2+4)  which appears on both sides of the fraction line.

Equation at the end of step  10  :

  (k6 + 11)       k2 • (k2 - 6)    
  ————————— • —————————————————————
     5k2      (2k6 - 3) • (k6 + 11)

Step  11  :

Trying to factor as a Sum of Cubes :

 11.1      Factoring:  k6+11 

Check :  11  is not a cube !!
Ruling : Binomial can not be factored as the difference of two perfect cubes

Trying to factor as a Difference of Squares :

 11.2      Factoring:  2k6-3 

Check :  2  is not a square !!

Ruling : Binomial can not be factored as the
difference of two perfect squares

Trying to factor as a Sum of Cubes :

 11.3      Factoring:  k6+11 

Check :  11  is not a cube !!
Ruling : Binomial can not be factored as the difference of two perfect cubes

Canceling Out :

 11.4    Cancel out  (k6+11)  which appears on both sides of the fraction line.

Canceling Out :

 11.5    Canceling out k2 as it appears on both sides of the fraction line

Trying to factor as a Difference of Squares :

 11.6      Factoring:  2k6-3 

Check :  2  is not a square !!

Ruling : Binomial can not be factored as the
difference of two perfect squares

Final result :

      k2 - 6   
  —————————————
  5 • (2k6 - 3)

Why learn this

Latest Related Drills Solved