Enter an equation or problem
Camera input is not recognized!

Solution - Reducing fractions to their lowest terms

(2a3-12a2+3)/(a4+7a3+12a2-9)
(2a^3-12a^2+3)/(a^4+7a^3+12a^2-9)

Step by Step Solution

Step  1  :

             9
 Simplify   ——
            a2

Equation at the end of step  1  :

         3          9
  (((a+————)+a)-12)——)+7a)+12)
       (a2)((((a^2)a2

Step  2  :

Rewriting the whole as an Equivalent Fraction :

 2.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  a2  as the denominator :

           a2     a2 • a2
     a2 =  ——  =  ———————
           1        a2   

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 2.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 a2 • a2 - (9)     a4 - 9
 —————————————  =  ——————
      a2             a2  

Equation at the end of step  2  :

         3         (a4-9)
  (((a+————)+a)-12)——————+7a)+12)
       (a2)((        a2  

Step  3  :

Rewriting the whole as an Equivalent Fraction :

 3.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  a2  as the denominator :

          7a     7a • a2
    7a =  ——  =  ———————
          1        a2   

Trying to factor as a Difference of Squares :

 3.2      Factoring:  a4 - 9 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 9 is the square of 3
Check :  a4  is the square of  a2 

Factorization is :       (a2 + 3)  •  (a2 - 3) 

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(a) = a2 + 3
Polynomial Roots Calculator is a set of methods aimed at finding values of  a  for which   F(a)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  a  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  3.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,3

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      4.00   
     -3     1      -3.00      12.00   
     1     1      1.00      4.00   
     3     1      3.00      12.00   


Polynomial Roots Calculator found no rational roots

Trying to factor as a Difference of Squares :

 3.4      Factoring:  a2 - 3 

Check : 3 is not a square !!

Ruling : Binomial can not be factored as the difference of two perfect squares.

Adding fractions that have a common denominator :

 3.5       Adding up the two equivalent fractions

 (a2+3) • (a2-3) + 7a • a2     a4 + 7a3 - 9
 —————————————————————————  =  ————————————
            a2                      a2     

Equation at the end of step  3  :

         3         (a4+7a3-9)
  (((a+————)+a)-12)——————————+12)
       (a2)(           a2    

Step  4  :

Rewriting the whole as an Equivalent Fraction :

 4.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  a2  as the denominator :

          12     12 • a2
    12 =  ——  =  ———————
          1        a2   

Polynomial Roots Calculator :

 4.2    Find roots (zeroes) of :       F(a) = a4 + 7a3 - 9

     See theory in step 3.3
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -9.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,3 ,9

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -15.00   
     -3     1      -3.00      -117.00   
     -9     1      -9.00      1449.00   
     1     1      1.00      -1.00   
     3     1      3.00      261.00   
     9     1      9.00     11655.00   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 4.3       Adding up the two equivalent fractions

 (a4+7a3-9) + 12 • a2     a4 + 7a3 + 12a2 - 9
 ————————————————————  =  ———————————————————
          a2                      a2         

Equation at the end of step  4  :

         3         (a4+7a3+12a2-9)
  (((a+————)+a)-12)———————————————
       (a2)              a2       

Step  5  :

3 Simplify —— a2

Equation at the end of step  5  :

   3               (a4 + 7a3 + 12a2 - 9)
  ——) + a) - 12) ÷ —————————————————————
  a2                        a2          

Step  6  :

Rewriting the whole as an Equivalent Fraction :

 6.1   Adding a fraction to a whole

Rewrite the whole as a fraction using  a2  as the denominator :

          a     a • a2
     a =  —  =  ——————
          1       a2  

Adding fractions that have a common denominator :

 6.2       Adding up the two equivalent fractions

 a • a2 + 3     a3 + 3
 ——————————  =  ——————
     a2           a2  

Equation at the end of step  6  :

  (a3 + 3)              (a4 + 7a3 + 12a2 - 9)
  ———————— + a) - 12) ÷ —————————————————————
     a2                          a2          

Step  7  :

Rewriting the whole as an Equivalent Fraction :

 7.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  a2  as the denominator :

         a     a • a2
    a =  —  =  ——————
         1       a2  

Trying to factor as a Sum of Cubes :

 7.2      Factoring:  a3 + 3 

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :
             (a+b) • (a2-ab+b2)
Proof  : (a+b) • (a2-ab+b2) =
    a3-a2b+ab2+ba2-b2a+b3 =
    a3+(a2b-ba2)+(ab2-b2a)+b3=
    a3+0+0+b3=
    a3+b3


Check :  3  is not a cube !!
Ruling : Binomial can not be factored as the difference of two perfect cubes

Polynomial Roots Calculator :

 7.3    Find roots (zeroes) of :       F(a) = a3 + 3

     See theory in step 3.3
In this case, the Leading Coefficient is  1  and the Trailing Constant is  3.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,3

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      2.00   
     -3     1      -3.00      -24.00   
     1     1      1.00      4.00   
     3     1      3.00      30.00   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 7.4       Adding up the two equivalent fractions

 (a3+3) + a • a2     2a3 + 3
 ———————————————  =  ———————
       a2              a2   

Equation at the end of step  7  :

  (2a3 + 3)         (a4 + 7a3 + 12a2 - 9)
  ————————— - 12) ÷ —————————————————————
     a2                      a2          

Step  8  :

Rewriting the whole as an Equivalent Fraction :

 8.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  a2  as the denominator :

          12     12 • a2
    12 =  ——  =  ———————
          1        a2   

Trying to factor as a Sum of Cubes :

 8.2      Factoring:  2a3 + 3 

Check :  2  is not a cube !!

Ruling : Binomial can not be factored as the difference of two perfect cubes

Polynomial Roots Calculator :

 8.3    Find roots (zeroes) of :       F(a) = 2a3 + 3

     See theory in step 3.3
In this case, the Leading Coefficient is  2  and the Trailing Constant is  3.

 
The factor(s) are:

of the Leading Coefficient :  1,2
 
of the Trailing Constant :  1 ,3

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      1.00   
     -1     2      -0.50      2.75   
     -3     1      -3.00      -51.00   
     -3     2      -1.50      -3.75   
     1     1      1.00      5.00   
     1     2      0.50      3.25   
     3     1      3.00      57.00   
     3     2      1.50      9.75   


Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

 8.4       Adding up the two equivalent fractions

 (2a3+3) - (12 • a2)     2a3 - 12a2 + 3
 ———————————————————  =  ——————————————
         a2                    a2      

Equation at the end of step  8  :

  (2a3 - 12a2 + 3)   (a4 + 7a3 + 12a2 - 9)
  ———————————————— ÷ —————————————————————
         a2                   a2          

Step  9  :

         2a3-12a2+3      a4+7a3+12a2-9
 Divide  ——————————  by  —————————————
             a2               a2      


 9.1    Dividing fractions

To divide fractions, write the divison as multiplication by the reciprocal of the divisor :

2a3 - 12a2 + 3     a4 + 7a3 + 12a2 - 9       2a3 - 12a2 + 3               a2         
——————————————  ÷  ———————————————————   =   ——————————————  •  —————————————————————
      a2                   a2                      a2           (a4 + 7a3 + 12a2 - 9)

Checking for a perfect cube :

 9.2    a4 + 7a3 + 12a2 - 9  is not a perfect cube

Trying to factor by pulling out :

 9.3      Factoring:  a4 + 7a3 + 12a2 - 9 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  12a2 - 9 
Group 2:  a4 + 7a3 

Pull out from each group separately :

Group 1:   (4a2 - 3) • (3)
Group 2:   (a + 7) • (a3)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 9.4    Find roots (zeroes) of :       F(a) = 2a3 - 12a2 + 3

     See theory in step 3.3
In this case, the Leading Coefficient is  2  and the Trailing Constant is  3.

 
The factor(s) are:

of the Leading Coefficient :  1,2
 
of the Trailing Constant :  1 ,3

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -11.00   
     -1     2      -0.50      -0.25   
     -3     1      -3.00      -159.00   
     -3     2      -1.50      -30.75   
     1     1      1.00      -7.00   
     1     2      0.50      0.25   
     3     1      3.00      -51.00   
     3     2      1.50      -17.25   


Polynomial Roots Calculator found no rational roots

Polynomial Roots Calculator :

 9.5    Find roots (zeroes) of :       F(a) = a4 + 7a3 + 12a2 - 9

     See theory in step 3.3
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -9.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,3 ,9

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -3.00   
     -3     1      -3.00      -9.00   
     -9     1      -9.00      2421.00   
     1     1      1.00      11.00   
     3     1      3.00      369.00   
     9     1      9.00     12627.00   


Polynomial Roots Calculator found no rational roots

Final result :

     2a3 - 12a2 + 3  
  ———————————————————
  a4 + 7a3 + 12a2 - 9

Why learn this

Latest Related Drills Solved