Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

(-6x3-11x2+6x-12)/(3x)
(-6x^3-11x^2+6x-12)/(3x)

Step by Step Solution

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "/-3x" was replaced by "/(-3x)".

Step  1  :

Equation at the end of step  1  :

  ((((6•(x3))+11x2)-9x)+12)
  —————————————————————————-1
             -3x           

Step  2  :

Equation at the end of step  2  :

  ((((2•3x3) + 11x2) - 9x) + 12)    
  —————————————————————————————— -  1
               -3x                  

Step  3  :

            6x3 + 11x2 - 9x + 12
 Simplify   ————————————————————
                    -3x         

Checking for a perfect cube :

 3.1    6x3 + 11x2 - 9x + 12  is not a perfect cube

Trying to factor by pulling out :

 3.2      Factoring:  6x3 + 11x2 - 9x + 12 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -9x + 12 
Group 2:  6x3 + 11x2 

Pull out from each group separately :

Group 1:   (3x - 4) • (-3)
Group 2:   (6x + 11) • (x2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = 6x3 + 11x2 - 9x + 12
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  6  and the Trailing Constant is  12.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6
 
of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,12

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      26.00   
     -1     2      -0.50      18.50   
     -1     3      -0.33      16.00   
     -1     6      -0.17      13.78   
     -2     1      -2.00      26.00   


Note - For tidiness, printing of 19 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  6x3 + 11x2 - 9x + 12 
                              ("Dividend")
By         :    -3x    ("Divisor")

dividend  6x3 + 11x2 - 9x + 12 
- divisor * -2x2   6x3       
remainder    11x2 - 9x + 12 
- divisor * -3x1     9x2     
remainder    2x2 - 9x + 12 
- divisor * 3x0     - 9x   
remainder    2x2   + 12 

Quotient :  -2x2 - 3x + 3 
Remainder :  2x2 + 12 

Equation at the end of step  3  :

  (6x3 + 11x2 - 9x + 12)    
  —————————————————————— -  1
           -3x              

Step  4  :

Rewriting the whole as an Equivalent Fraction :

 4.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  -3x  as the denominator :

         1     1 • -3x
    1 =  —  =  ———————
         1       -3x  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 4.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 (6x3+11x2-9x+12) • -1 - (3x)     -6x3 - 11x2 + 6x - 12
 ————————————————————————————  =  —————————————————————
              3x                           3x          

Step  5  :

Pulling out like terms :

 5.1     Pull out like factors :

   -6x3 - 11x2 + 6x - 12  = 

  -1 • (6x3 + 11x2 - 6x + 12) 

Checking for a perfect cube :

 5.2    6x3 + 11x2 - 6x + 12  is not a perfect cube

Trying to factor by pulling out :

 5.3      Factoring:  6x3 + 11x2 - 6x + 12 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  11x2 + 12 
Group 2:  6x3 - 6x 

Pull out from each group separately :

Group 1:   (11x2 + 12) • (1)
Group 2:   (x2 - 1) • (6x)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 5.4    Find roots (zeroes) of :       F(x) = 6x3 + 11x2 - 6x + 12

     See theory in step 3.3
In this case, the Leading Coefficient is  6  and the Trailing Constant is  12.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6
 
of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,12

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      23.00   
     -1     2      -0.50      17.00   
     -1     3      -0.33      15.00   
     -1     6      -0.17      13.28   
     -2     1      -2.00      20.00   


Note - For tidiness, printing of 19 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Final result :

  -6x3 - 11x2 + 6x - 12
  —————————————————————
           3x          

Why learn this

Latest Related Drills Solved