Enter an equation or problem
Camera input is not recognized!

Solution - Adding, subtracting and finding the least common multiple

(2592a5+1944a4+360a3-135a2-208a-96)/(36a2)
(2592a^5+1944a^4+360a^3-135a^2-208a-96)/(36a^2)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

        (15•(a2))                       (13a+6)
  ((10a-—————————)+((12a+9)•(6•(a2))))+(———————•-4)
        (4•(a2))                         32a2  

Step  2  :

            13a + 6
 Simplify   ———————
             32a2  

Equation at the end of step  2  :

        (15•(a2))                       (13a+6)
  ((10a-—————————)+((12a+9)•(6•(a2))))+(———————•-4)
        (4•(a2))                         32a2  

Step  3  :

Equation at the end of step  3  :

        (15•(a2))                      -4•(13a+6)
  ((10a-—————————)+((12a+9)•(6•(a2))))+——————————
        (4•(a2))                          9a2    

Step  4  :

Equation at the end of step  4  :

        (15•(a2))                     -4•(13a+6)
  ((10a-—————————)+((12a+9)•(2•3a2)))+——————————
        (4•(a2))                         9a2    

Step  5  :

Step  6  :

Pulling out like terms :

 6.1     Pull out like factors :

   12a + 9  =   3 • (4a + 3) 

Multiplying exponents :

 6.2    31  multiplied by  31   = 3(1 + 1) = 32

Equation at the end of step  6  :

        (15•(a2))                   -4•(13a+6)
  ((10a-—————————)+(32•2a2)•(4a+3))+——————————
        (4•(a2))                       9a2    

Step  7  :

Equation at the end of step  7  :

        (15•(a2))                   -4•(13a+6)
  ((10a-—————————)+(32•2a2)•(4a+3))+——————————
          22a2                         9a2    

Step  8  :

Equation at the end of step  8  :

        (3•5a2)                   -4•(13a+6)
  ((10a-———————)+(32•2a2)•(4a+3))+——————————
         22a2                        9a2    

Step  9  :

            (3•5a2)
 Simplify   ———————
             22a2  

Canceling Out :

 9.1    Canceling out a2 as it appears on both sides of the fraction line

Equation at the end of step  9  :

        15                   -4•(13a+6)
  ((10a-——)+(32•2a2)•(4a+3))+——————————
        4                       9a2    

Step  10  :

Rewriting the whole as an Equivalent Fraction :

 10.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  4  as the denominator :

            10a     10a • 4
     10a =  ———  =  ———————
             1         4   

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 10.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

 10a • 4 - (15)     40a - 15
 ——————————————  =  ————————
       4               4    

Equation at the end of step  10  :

   (40a - 15)                            -4 • (13a + 6)
  (—————————— +  (32•2a2) • (4a + 3)) +  ——————————————
       4                                      9a2      

Step  11  :

Rewriting the whole as an Equivalent Fraction :

 11.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  4  as the denominator :

                           (32•2a2) • (4a + 3)     (32•2a2) • (4a + 3) • 4
    (32•2a2) • (4a + 3) =  ———————————————————  =  ———————————————————————
                                    1                         4           

Step  12  :

Pulling out like terms :

 12.1     Pull out like factors :

   40a - 15  =   5 • (8a - 3) 

Adding fractions that have a common denominator :

 12.2       Adding up the two equivalent fractions

 5 • (8a-3) + (32•2a2) • (4a+3) • 4     288a3 + 216a2 + 40a - 15
 ——————————————————————————————————  =  ————————————————————————
                 4                                 4            

Equation at the end of step  12  :

  (288a3 + 216a2 + 40a - 15)    -4 • (13a + 6)
  —————————————————————————— +  ——————————————
              4                      9a2      

Step  13  :

Checking for a perfect cube :

 13.1    288a3+216a2+40a-15  is not a perfect cube

Trying to factor by pulling out :

 13.2      Factoring:  288a3+216a2+40a-15 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  40a-15 
Group 2:  288a3+216a2 

Pull out from each group separately :

Group 1:   (8a-3) • (5)
Group 2:   (4a+3) • (72a2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 13.3    Find roots (zeroes) of :       F(a) = 288a3+216a2+40a-15
Polynomial Roots Calculator is a set of methods aimed at finding values of  a  for which   F(a)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  a  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  288  and the Trailing Constant is  -15.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,4 ,6 ,8 ,9 ,12 ,16 ,18 , etc
 
of the Trailing Constant :  1 ,3 ,5 ,15

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -127.00   
     -1     2      -0.50      -17.00   
     -1     3      -0.33      -15.00   
     -1     4      -0.25      -16.00   
     -1     6      -0.17      -17.00   


Note - For tidiness, printing of 55 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Calculating the Least Common Multiple :

 13.4    Find the Least Common Multiple

      The left denominator is :       4 

      The right denominator is :       9a2 

        Number of times each prime factor
        appears in the factorization of:
 Prime 
 Factor 
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
2202
3022
 Product of all 
 Prime Factors 
4936

                  Number of times each Algebraic Factor
            appears in the factorization of:
    Algebraic    
    Factor    
 Left 
 Denominator 
 Right 
 Denominator 
 L.C.M = Max 
 {Left,Right} 
 a 022


      Least Common Multiple:
      36a2 

Calculating Multipliers :

 13.5    Calculate multipliers for the two fractions


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 9a2

   Right_M = L.C.M / R_Deno = 4

Making Equivalent Fractions :

 13.6      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

   L. Mult. • L. Num.      (288a3+216a2+40a-15) • 9a2
   ——————————————————  =   ——————————————————————————
         L.C.M                        36a2           

   R. Mult. • R. Num.      -4 • (13a+6) • 4
   ——————————————————  =   ————————————————
         L.C.M                   36a2      

Adding fractions that have a common denominator :

 13.7       Adding up the two equivalent fractions

 (288a3+216a2+40a-15) • 9a2 + -4 • (13a+6) • 4     2592a5 + 1944a4 + 360a3 - 135a2 - 208a - 96 
 —————————————————————————————————————————————  =  ———————————————————————————————————————————
                     36a2                                             36a2                    

Trying to factor by pulling out :

 13.8      Factoring:  2592a5 + 1944a4 + 360a3 - 135a2 - 208a - 96 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  360a3 - 135a2 
Group 2:  2592a5 + 1944a4 
Group 3:  -208a - 96 

Pull out from each group separately :

Group 1:   (8a - 3) • (45a2)
Group 2:   (4a + 3) • (648a4)
Group 3:   (13a + 6) • (-16)


Looking for common sub-expressions :

Group 1:   (8a - 3) • (45a2)
Group 3:   (13a + 6) • (-16)
Group 2:   (4a + 3) • (648a4)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 13.9    Find roots (zeroes) of :       F(a) = 2592a5 + 1944a4 + 360a3 - 135a2 - 208a - 96

     See theory in step 13.3
In this case, the Leading Coefficient is  2592  and the Trailing Constant is  -96.

 
The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,4 ,6 ,8 ,9 ,12 ,16 ,18 , etc
 
of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,8 ,12 ,16 ,24 ,32 , etc

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00     -1031.00   
     -1     2      -0.50      -30.25   
     -1     3      -0.33      -41.67   
     -1     4      -0.25      -53.00   
     -1     6      -0.17      -65.58   


Note - For tidiness, printing of 61 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Final result :

  2592a5 + 1944a4 + 360a3 - 135a2 - 208a - 96 
  ———————————————————————————————————————————
                     36a2                    

Why learn this

Latest Related Drills Solved