Solution - Adding, subtracting and finding the least common multiple
Other Ways to Solve
Adding, subtracting and finding the least common multipleStep by Step Solution
Step 1 :
m
Simplify ———————
n2 - m2
Trying to factor as a Difference of Squares :
1.1 Factoring: n2 - m2
Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A2 - AB + BA - B2 =
A2 - AB + AB - B2 =
A2 - B2
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression.
Check : n2 is the square of n1
Check : m2 is the square of m1
Factorization is : (n + m) • (n - m)
Equation at the end of step 1 :
1 1 m
(—————-—————)+(2•———————————)
(m+n) (m-n) (m+n)•(n-m)
Step 2 :
Equation at the end of step 2 :
1 1 2m
(—————-—————)+———————————
(m+n) (m-n) (m+n)•(n-m)
Step 3 :
1
Simplify —————
m - n
Equation at the end of step 3 :
1 1 2m
(—————-———)+———————————
(m+n) m-n (m+n)•(n-m)
Step 4 :
1
Simplify —————
m + n
Equation at the end of step 4 :
1 1 2m
(————— - —————) + —————————————————
m + n m - n (m + n) • (n - m)
Step 5 :
Calculating the Least Common Multiple :
5.1 Find the Least Common Multiple
The left denominator is : m+n
The right denominator is : m-n
| Algebraic Factor | Left Denominator | Right Denominator | L.C.M = Max {Left,Right} |
|---|---|---|---|
| m+n | 1 | 0 | 1 |
| m-n | 0 | 1 | 1 |
Least Common Multiple:
(m+n) • (m-n)
Calculating Multipliers :
5.2 Calculate multipliers for the two fractions
Denote the Least Common Multiple by L.C.M
Denote the Left Multiplier by Left_M
Denote the Right Multiplier by Right_M
Denote the Left Deniminator by L_Deno
Denote the Right Multiplier by R_Deno
Left_M = L.C.M / L_Deno = m-n
Right_M = L.C.M / R_Deno = m+n
Making Equivalent Fractions :
5.3 Rewrite the two fractions into equivalent fractions
Two fractions are called equivalent if they have the same numeric value.
For example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well.
To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.
L. Mult. • L. Num. m-n —————————————————— = ————————————— L.C.M (m+n) • (m-n) R. Mult. • R. Num. m+n —————————————————— = ————————————— L.C.M (m+n) • (m-n)
Adding fractions that have a common denominator :
5.4 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
m-n - (m+n) -2n
————————————— = —————————————————
(m+n) • (m-n) (m + n) • (m - n)
Equation at the end of step 5 :
-2n 2m
————————————————— + —————————————————
(m + n) • (m - n) (m + n) • (n - m)
Step 6 :
Making Equivalent Fractions :
6.1 Rewrite the two fractions into equivalent fractions
L. Mult. • L. Num. -2n —————————————————— = ————————————— L.C.M (m+n) • (m-n) R. Mult. • R. Num. 2m • -1 —————————————————— = ————————————— L.C.M (m+n) • (m-n)
Adding fractions that have a common denominator :
6.2 Adding up the two equivalent fractions
-2n + 2m • -1 -2m - 2n
————————————— = —————————————————
(m+n) • (m-n) (m + n) • (m - n)
Step 7 :
Pulling out like terms :
7.1 Pull out like factors :
-2m - 2n = -2 • (m + n)
Canceling Out :
7.2 Cancel out (m + n) which appears on both sides of the fraction line.
Final result :
+2 ————— m + n
How did we do?
Please leave us feedback.