Enter an equation or problem
Camera input is not recognized!

Solution - Factoring binomials using the difference of squares

((m+n)*(m2-mn+n2))/((m-n)*(m2+mn+n2))
((m+n)*(m^2-mn+n^2))/((m-n)*(m^2+mn+n^2))

Step by Step Solution

Step  1  :

            m3 + n3
 Simplify   ———————
            m3 - n3

Trying to factor as a Sum of Cubes :

 1.1      Factoring:  m3 + n3 

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :
             (a+b) • (a2-ab+b2)
Proof  : (a+b) • (a2-ab+b2) =
    a3-a2b+ab2+ba2-b2a+b3 =
    a3+(a2b-ba2)+(ab2-b2a)+b3=
    a3+0+0+b3=
    a3+b3


Check :  m3 is the cube of   m1

Check :  n3 is the cube of   n1

Factorization is :
             (m + n)  •  (m2 - mn + n2) 

Trying to factor a multi variable polynomial :

 1.2    Factoring    m2 - mn + n2 

Try to factor this multi-variable trinomial using trial and error 

 
Factorization fails

Trying to factor as a Difference of Cubes:

 1.3      Factoring:  m3 - n3 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  m3 is the cube of   m1

Check :  n3 is the cube of   n1

Factorization is :
             (m - n)  •  (m2 + mn + n2) 

Trying to factor a multi variable polynomial :

 1.4    Factoring    m2 + mn + n2 

Try to factor this multi-variable trinomial using trial and error 

 
Factorization fails

Final result :

  (m + n) • (m2 - mn + n2)
  ————————————————————————
  (m - n) • (m2 + mn + n2)

Why learn this

Latest Related Drills Solved