Enter an equation or problem
Camera input is not recognized!

Solution - Simplification or other simple results

(7p+5)/(5p-4)
(7p+5)/(5p-4)

Step by Step Solution

 0  p7_Paren_Max_Level        0
 1  p7_Total_i                0
 2  p7_Level_1_i              0
 3  p7_N_Level_1_Close_Paren  2
 4  p7_N_Commas               0
 5  p7_Total_Dots             0
 6  p7_Level_z_dots           0
 7  p7_Level_1_dots           0
 8  p7_GT_LT                  0
 9  p7_var_after_non_al       8
10  p7_First_Non_Alpha        0
11  p7_EQ                     0
12  p7_Numbers                16
13  p7_Dot_in_Numbers         0
14  p7_Dot_Outside_Numbers    0
15  p7_Semi_Col               0
16  p7_Errors                 0
17  p7_Total_Ops              11
18  p7_Lvl_One_Ops            2
19  p7_Lvl_One_P_M            0
20  p7_LCM_GCF_FOUND          0
21  p7_Area                   0
22  p7_sqrt_found             0
23  p7_close_open_paren       0
24  p7_factor_or_prime        0
25  p7_vars                   8
26  p7_kova_2                 0
27  p7_var_2                  0
28  p7_product_of_vars        0
29  p7_sqrt_error             0
30  p7_unallowed_ops_in sqrt +/: 0

Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "p2"   was replaced by   "p^2".  3 more similar replacement(s).

Step  1  :

Equation at the end of step  1  :

   (((14•(p2))+17p)+5)   (((2•(p2))+9p)+4)
  ———————————————————— ÷ —————————————————
  (((20•(p2))+19p)-28)    ((22p2+23p)+28) 

Step  2  :

Equation at the end of step  2  :

   (((14•(p2))+17p)+5)   ((2p2+9p)+4)
  ———————————————————— ÷ ————————————
  (((20•(p2))+19p)-28)   (4p2+23p+28)

Step  3  :

             2p2 + 9p + 4 
 Simplify   ——————————————
            4p2 + 23p + 28

Trying to factor by splitting the middle term

 3.1     Factoring  2p2 + 9p + 4 

The first term is,  2p2  its coefficient is  2 .
The middle term is,  +9p  its coefficient is  9 .
The last term, "the constant", is  +4 

Step-1 : Multiply the coefficient of the first term by the constant   2 • 4 = 8 

Step-2 : Find two factors of  8  whose sum equals the coefficient of the middle term, which is   9 .

     -8   +   -1   =   -9
     -4   +   -2   =   -6
     -2   +   -4   =   -6
     -1   +   -8   =   -9
     1   +   8   =   9   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  1  and  8 
                     2p2 + 1p + 8p + 4

Step-4 : Add up the first 2 terms, pulling out like factors :
                    p • (2p+1)
              Add up the last 2 terms, pulling out common factors :
                    4 • (2p+1)
Step-5 : Add up the four terms of step 4 :
                    (p+4)  •  (2p+1)
             Which is the desired factorization

Trying to factor by splitting the middle term

 3.2     Factoring  4p2+23p+28 

The first term is,  4p2  its coefficient is  4 .
The middle term is,  +23p  its coefficient is  23 .
The last term, "the constant", is  +28 

Step-1 : Multiply the coefficient of the first term by the constant   4 • 28 = 112 

Step-2 : Find two factors of  112  whose sum equals the coefficient of the middle term, which is   23 .

     -112   +   -1   =   -113
     -56   +   -2   =   -58
     -28   +   -4   =   -32
     -16   +   -7   =   -23
     -14   +   -8   =   -22
     -8   +   -14   =   -22
     -7   +   -16   =   -23
     -4   +   -28   =   -32
     -2   +   -56   =   -58
     -1   +   -112   =   -113
     1   +   112   =   113
     2   +   56   =   58
     4   +   28   =   32
     7   +   16   =   23   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  7  and  16 
                     4p2 + 7p + 16p + 28

Step-4 : Add up the first 2 terms, pulling out like factors :
                    p • (4p+7)
              Add up the last 2 terms, pulling out common factors :
                    4 • (4p+7)
Step-5 : Add up the four terms of step 4 :
                    (p+4)  •  (4p+7)
             Which is the desired factorization

Canceling Out :

 3.3    Cancel out  (p+4)  which appears on both sides of the fraction line.

Equation at the end of step  3  :

   (((14•(p2))+17p)+5)   (2p+1)
  ———————————————————— ÷ ——————
  (((20•(p2))+19p)-28)    4p+7 

Step  4  :

Equation at the end of step  4  :

  (((14•(p2))+17p)+5)   (2p+1)
  ——————————————————— ÷ ——————
  (((22•5p2)+19p)-28)    4p+7 

Step  5  :

Equation at the end of step  5  :

  (((2•7p2) + 17p) + 5)   (2p + 1)
  ————————————————————— ÷ ————————
    (20p2 + 19p - 28)      4p + 7 

Step  6  :

             14p2 + 17p + 5
 Simplify   ———————————————
            20p2 + 19p - 28

Trying to factor by splitting the middle term

 6.1     Factoring  14p2 + 17p + 5 

The first term is,  14p2  its coefficient is  14 .
The middle term is,  +17p  its coefficient is  17 .
The last term, "the constant", is  +5 

Step-1 : Multiply the coefficient of the first term by the constant   14 • 5 = 70 

Step-2 : Find two factors of  70  whose sum equals the coefficient of the middle term, which is   17 .

     -70   +   -1   =   -71
     -35   +   -2   =   -37
     -14   +   -5   =   -19
     -10   +   -7   =   -17
     -7   +   -10   =   -17
     -5   +   -14   =   -19
     -2   +   -35   =   -37
     -1   +   -70   =   -71
     1   +   70   =   71
     2   +   35   =   37
     5   +   14   =   19
     7   +   10   =   17   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  7  and  10 
                     14p2 + 7p + 10p + 5

Step-4 : Add up the first 2 terms, pulling out like factors :
                    7p • (2p+1)
              Add up the last 2 terms, pulling out common factors :
                    5 • (2p+1)
Step-5 : Add up the four terms of step 4 :
                    (7p+5)  •  (2p+1)
             Which is the desired factorization

Trying to factor by splitting the middle term

 6.2     Factoring  20p2+19p-28 

The first term is,  20p2  its coefficient is  20 .
The middle term is,  +19p  its coefficient is  19 .
The last term, "the constant", is  -28 

Step-1 : Multiply the coefficient of the first term by the constant   20 • -28 = -560 

Step-2 : Find two factors of  -560  whose sum equals the coefficient of the middle term, which is   19 .

     -560   +   1   =   -559
     -280   +   2   =   -278
     -140   +   4   =   -136
     -112   +   5   =   -107
     -80   +   7   =   -73
     -70   +   8   =   -62
     -56   +   10   =   -46
     -40   +   14   =   -26
     -35   +   16   =   -19
     -28   +   20   =   -8
     -20   +   28   =   8
     -16   +   35   =   19   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -16  and  35 
                     20p2 - 16p + 35p - 28

Step-4 : Add up the first 2 terms, pulling out like factors :
                    4p • (5p-4)
              Add up the last 2 terms, pulling out common factors :
                    7 • (5p-4)
Step-5 : Add up the four terms of step 4 :
                    (4p+7)  •  (5p-4)
             Which is the desired factorization

Equation at the end of step  6  :

  (2p + 1) • (7p + 5)   (2p + 1)
  ——————————————————— ÷ ————————
  (5p - 4) • (4p + 7)    4p + 7 

Step  7  :

         (2p+1)•(7p+5)       2p+1 
 Divide  —————————————  by  ——————
         (5p-4)•(4p+7)      (4p+7)


 7.1    Dividing fractions

To divide fractions, write the divison as multiplication by the reciprocal of the divisor :

(2p + 1) • (7p + 5)      2p + 1        (2p + 1) • (7p + 5)      4p + 7 
———————————————————  ÷  ————————   =   ———————————————————  •  ————————
(5p - 4) • (4p + 7)     (4p + 7)       (5p - 4) • (4p + 7)     (2p + 1)

Canceling Out :

 7.2    Cancel out  (2p + 1)  which appears on both sides of the fraction line.

Canceling Out :

 7.3    Cancel out  (4p + 7)  which appears on both sides of the fraction line.

Final result :

  7p + 5
  ——————
  5p - 4

Why learn this

Terms and topics

Latest Related Drills Solved