Enter an equation or problem
Camera input is not recognized!

Solution - Factoring binomials using the difference of squares

(r+x1098)(x2196+r2x1098r)(x1098r)(x2196+r2+x1098r)
(r+x^1098)*(x^2196+r^2-x^1098r)*(x^1098-r)*(x^2196+r^2+x^1098r)

Step by Step Solution

Step  1  :

Trying to factor as a Difference of Squares :

 1.1      Factoring:  x6588-r6 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  x6588  is the square of  x3294 

Check :  r6  is the square of  r3 

Factorization is :       (x3294 + r3)  •  (x3294 - r3) 

Trying to factor as a Sum of Cubes :

 1.2      Factoring:  x3294 + r3 

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :
             (a+b) • (a2-ab+b2)
Proof  : (a+b) • (a2-ab+b2) =
    a3-a2b+ab2+ba2-b2a+b3 =
    a3+(a2b-ba2)+(ab2-b2a)+b3=
    a3+0+0+b3=
    a3+b3


Check :  x3294 is the cube of   x1098

Check :  r3 is the cube of   r1

Factorization is :
             (x1098 + r)  •  (x2196 - x1098r + r2) 

Trying to factor as a Sum of Cubes :

 1.3      Factoring:  x1098 + r 

Check :  x1098 is the cube of   x366

Check :  r 1 is not a cube !!
Ruling : Binomial can not be factored as the difference of two perfect cubes

Trying to factor a multi variable polynomial :

 1.4    Factoring   x2196 - x1098r + r2

Try to factor this multi-variable trinomial using trial and error 

 
Factorization fails

Trying to factor as a Difference of Squares :

 1.5      Factoring: x3294 - r3

Check :  x3294  is the square of  x1647 

Check :  r3   is not a square !!
Ruling : Binomial can not be factored as the difference of two perfect squares

Trying to factor as a Difference of Cubes:

 1.6      Factoring: x3294 - r3

Theory : A difference of two perfect cubes, a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  x3294 is the cube of   x1098

Check :  r3 is the cube of   r1

Factorization is :
             (x1098 - r)  •  (x2196 + x1098r + r2) 

Trying to factor as a Difference of Squares :

 1.7      Factoring:  x1098 - r 

Check :  x1098  is the square of  x549 

Check :  r1   is not a square !!
Ruling : Binomial can not be factored as the difference of two perfect squares

Trying to factor as a Difference of Cubes:

 1.8      Factoring:  x1098 - r 

Check :  x1098 is the cube of   x366

Check :  r 1 is not a cube !!
Ruling : Binomial can not be factored as the difference of two perfect cubes

Trying to factor a multi variable polynomial :

 1.9    Factoring   x2196 + x1098r + r2

Try to factor this multi-variable trinomial using trial and error 

 
Factorization fails

Final result :

  (r+x1098)•(x2196+r2-x1098r)•(x1098-r)•(x2196+r2+x1098r)

Why learn this

Latest Related Drills Solved