Enter an equation or problem
Camera input is not recognized!

Solution - Factoring binomials using the difference of squares

(x+1)(x2x+1)(x5)(x2+5x+25)
(x+1)*(x^2-x+1)*(x-5)*(x^2+5x+25)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  ((x6) -  (22•31x3)) -  125

Step  2  :

Trying to factor by splitting the middle term

 2.1     Factoring  x6-124x3-125 

The first term is,  x6  its coefficient is  1 .
The middle term is,  -124x3  its coefficient is  -124 .
The last term, "the constant", is  -125 

Step-1 : Multiply the coefficient of the first term by the constant   1 • -125 = -125 

Step-2 : Find two factors of  -125  whose sum equals the coefficient of the middle term, which is   -124 .

     -125   +   1   =   -124   That's it


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -125  and  1 
                     x6 - 125x3 + 1x3 - 125

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x3 • (x3-125)
              Add up the last 2 terms, pulling out common factors :
                     1 • (x3-125)
Step-5 : Add up the four terms of step 4 :
                    (x3+1)  •  (x3-125)
             Which is the desired factorization

Trying to factor as a Sum of Cubes :

 2.2      Factoring:  x3+1 

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :
             (a+b) • (a2-ab+b2)
Proof  : (a+b) • (a2-ab+b2) =
    a3-a2b+ab2+ba2-b2a+b3 =
    a3+(a2b-ba2)+(ab2-b2a)+b3=
    a3+0+0+b3=
    a3+b3


Check :  1  is the cube of   1 
Check :  x3 is the cube of   x1

Factorization is :
             (x + 1)  •  (x2 - x + 1) 

Trying to factor by splitting the middle term

 2.3     Factoring  x2 - x + 1 

The first term is,  x2  its coefficient is  1 .
The middle term is,  -x  its coefficient is  -1 .
The last term, "the constant", is  +1 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 1 = 1 

Step-2 : Find two factors of  1  whose sum equals the coefficient of the middle term, which is   -1 .

     -1   +   -1   =   -2
     1   +   1   =   2


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Trying to factor as a Difference of Cubes:

 2.4      Factoring:  x3-125 

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into
              (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =
            a3+a2b+ab2-ba2-b2a-b3 =
            a3+(a2b-ba2)+(ab2-b2a)-b3 =
            a3+0+0-b3 =
            a3-b3


Check :  125  is the cube of   5 
Check :  x3 is the cube of   x1

Factorization is :
             (x - 5)  •  (x2 + 5x + 25) 

Trying to factor by splitting the middle term

 2.5     Factoring  x2 + 5x + 25 

The first term is,  x2  its coefficient is  1 .
The middle term is,  +5x  its coefficient is  5 .
The last term, "the constant", is  +25 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 25 = 25 

Step-2 : Find two factors of  25  whose sum equals the coefficient of the middle term, which is   5 .

     -25   +   -1   =   -26
     -5   +   -5   =   -10
     -1   +   -25   =   -26
     1   +   25   =   26
     5   +   5   =   10
     25   +   1   =   26


Observation : No two such factors can be found !!
Conclusion : Trinomial can not be factored

Final result :

  (x+1)•(x2-x+1)•(x-5)•(x2+5x+25)

Why learn this

Latest Related Drills Solved