Enter an equation or problem
Camera input is not recognized!

Solution - Finding the roots of polynomials

x=3
x=3
x=2
x=2
x=0.00001.0000i
x=0.0000-1.0000i
x=0.0000+1.0000i
x=0.0000+1.0000i

Step by Step Solution

Step by step solution :

Step  1  :

Equation at the end of step  1  :

  ((((x4)-(5•(x3)))+7x2)-5x)+6  = 0 

Step  2  :

Equation at the end of step  2  :

  ((((x4) -  5x3) +  7x2) -  5x) +  6  = 0 

Step  3  :

Polynomial Roots Calculator :

 3.1    Find roots (zeroes) of :       F(x) = x4-5x3+7x2-5x+6
Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  6.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2 ,3 ,6

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      24.00   
     -2     1      -2.00      100.00   
     -3     1      -3.00      300.00   
     -6     1      -6.00      2664.00   
     1     1      1.00      4.00   
     2     1      2.00      0.00    x-2 
     3     1      3.00      0.00    x-3 
     6     1      6.00      444.00   


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x4-5x3+7x2-5x+6 
can be divided by 2 different polynomials,including by  x-3 

Polynomial Long Division :

 3.2    Polynomial Long Division
Dividing :  x4-5x3+7x2-5x+6 
                              ("Dividend")
By         :    x-3    ("Divisor")

dividend  x4 - 5x3 + 7x2 - 5x + 6 
- divisor * x3   x4 - 3x3       
remainder  - 2x3 + 7x2 - 5x + 6 
- divisor * -2x2   - 2x3 + 6x2     
remainder      x2 - 5x + 6 
- divisor * x1       x2 - 3x   
remainder      - 2x + 6 
- divisor * -2x0       - 2x + 6 
remainder         0

Quotient :  x3-2x2+x-2  Remainder:  0 

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = x3-2x2+x-2

     See theory in step 3.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  -2.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1 ,2

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      -6.00   
     -2     1      -2.00      -20.00   
     1     1      1.00      -2.00   
     2     1      2.00      0.00    x-2 


The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that
   x3-2x2+x-2 
can be divided with  x-2 

Polynomial Long Division :

 3.4    Polynomial Long Division
Dividing :  x3-2x2+x-2 
                              ("Dividend")
By         :    x-2    ("Divisor")

dividend  x3 - 2x2 + x - 2 
- divisor * x2   x3 - 2x2     
remainder      x - 2 
- divisor * 0x1         
remainder      x - 2 
- divisor * x0       x - 2 
remainder       0

Quotient :  x2+1  Remainder:  0 

Polynomial Roots Calculator :

 3.5    Find roots (zeroes) of :       F(x) = x2+1

     See theory in step 3.1
In this case, the Leading Coefficient is  1  and the Trailing Constant is  1.

 
The factor(s) are:

of the Leading Coefficient :  1
 
of the Trailing Constant :  1

 
Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor
     -1     1      -1.00      2.00   
     1     1      1.00      2.00   


Polynomial Roots Calculator found no rational roots

Equation at the end of step  3  :

  (x2 + 1) • (x - 2) • (x - 3)  = 0 

Step  4  :

Theory - Roots of a product :

 4.1    A product of several terms equals zero. 

 
When a product of two or more terms equals zero, then at least one of the terms must be zero. 

 
We shall now solve each term = 0 separately 

 
In other words, we are going to solve as many equations as there are terms in the product 

 
Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

 4.2      Solve  :    x2+1 = 0 

 
Subtract  1  from both sides of the equation : 
 
                     x2 = -1
 
 
When two things are equal, their square roots are equal. Taking the square root of the two sides of the equation we get:  
 
                     x  =  ± √ -1  

 
In Math,  i  is called the imaginary unit. It satisfies   i2  =-1. Both   i   and   -i   are the square roots of   -1 
The equation has no real solutions. It has 2 imaginary, or complex solutions.

                      x=  0.0000 + 1.0000
                      x=  0.0000 - 1.0000

Solving a Single Variable Equation :

 4.3      Solve  :    x-2 = 0 

 
Add  2  to both sides of the equation : 
 
                     x = 2

Solving a Single Variable Equation :

 4.4      Solve  :    x-3 = 0 

 
Add  3  to both sides of the equation : 
 
                     x = 3

Four solutions were found :

  1.  x = 3
  2.  x = 2
  3.   x=  0.0000 - 1.0000
  4.   x=  0.0000 + 1.0000

Why learn this

Latest Related Drills Solved