Solution - Factoring multivariable polynomials
Other Ways to Solve
Factoring multivariable polynomialsStep by Step Solution
Step 1 :
Equation at the end of step 1 :
((8•(x3))-(125•(y3))) (((4•(x2))+10xy)+(25•(y2))) ————————————————————— ÷ ——————————————————————————— ((2x+5y)3) (((4•(x2))+20xy)+52y2)Step 2 :
Equation at the end of step 2 :
((8•(x3))-(125•(y3))) (((4•(x2))+10xy)+(25•(y2))) ————————————————————— ÷ ——————————————————————————— ((2x+5y)3) ((22x2+20xy)+52y2)Step 3 :
Equation at the end of step 3 :
((8•(x3))-(125•(y3))) (((4•(x2))+10xy)+52y2) ————————————————————— ÷ —————————————————————— ((2x+5y)3) (4x2+20xy+25y2)Step 4 :
Equation at the end of step 4 :
((8•(x3))-(125•(y3))) ((22x2+10xy)+52y2)
————————————————————— ÷ ——————————————————
((2x+5y)3) (4x2+20xy+25y2)
Step 5 :
4x2 + 10xy + 25y2
Simplify —————————————————
4x2 + 20xy + 25y2
Trying to factor a multi variable polynomial :
5.1 Factoring 4x2 + 10xy + 25y2
Try to factor this multi-variable trinomial using trial and error
Factorization fails
Trying to factor a multi variable polynomial :
5.2 Factoring 4x2 + 20xy + 25y2
Try to factor this multi-variable trinomial using trial and error
Found a factorization : (2x + 5y)•(2x + 5y)
Detecting a perfect square :
5.3 4x2 +20xy +25y2 is a perfect square
It factors into (2x+5y)•(2x+5y)
which is another way of writing (2x+5y)2
How to recognize a perfect square trinomial:
• It has three terms
• Two of its terms are perfect squares themselves
• The remaining term is twice the product of the square roots of the other two terms
Equation at the end of step 5 :
((8•(x3))-(125•(y3))) (4x2+10xy+25y2) ————————————————————— ÷ ——————————————— ((2x+5y)3) (2x+5y)2Step 6 :
Equation at the end of step 6 :
((8•(x3))-53y3) (4x2+10xy+25y2) ——————————————— ÷ ——————————————— (2x+5y)3 (2x+5y)2Step 7 :
Equation at the end of step 7 :
(23x3 - 53y3) (4x2 + 10xy + 25y2)
————————————— ÷ ———————————————————
(2x + 5y)3 (2x + 5y)2
Step 8 :
8x3 - 125y3
Simplify ———————————
(2x + 5y)3
Trying to factor as a Difference of Cubes:
8.1 Factoring: 8x3 - 125y3
Theory : A difference of two perfect cubes, a3 - b3 can be factored into
(a-b) • (a2 +ab +b2)
Proof : (a-b)•(a2+ab+b2) =
a3+a2b+ab2-ba2-b2a-b3 =
a3+(a2b-ba2)+(ab2-b2a)-b3 =
a3+0+0-b3 =
a3-b3
Check : 8 is the cube of 2
Check : 125 is the cube of 5
Check : x3 is the cube of x1
Check : y3 is the cube of y1
Factorization is :
(2x - 5y) • (4x2 + 10xy + 25y2)
Trying to factor a multi variable polynomial :
8.2 Factoring 4x2 + 10xy + 25y2
Try to factor this multi-variable trinomial using trial and error
Factorization fails
Equation at the end of step 8 :
(2x - 5y) • (4x2 + 10xy + 25y2) (4x2 + 10xy + 25y2)
——————————————————————————————— ÷ ———————————————————
(2x + 5y)3 (2x + 5y)2
Step 9 :
(2x-5y)•(4x2+10xy+25y2) 4x2+10xy+25y2
Divide ——————————————————————— by —————————————
(2x+5y)3 (2x+5y)2
9.1 Dividing fractions
To divide fractions, write the divison as multiplication by the reciprocal of the divisor :
(2x - 5y) • (4x2 + 10xy + 25y2) 4x2 + 10xy + 25y2 (2x - 5y) • (4x2 + 10xy + 25y2) (2x + 5y)2 ——————————————————————————————— ÷ ————————————————— = ——————————————————————————————— • ——————————————————— (2x + 5y)3 (2x + 5y)2 (2x + 5y)3 (4x2 + 10xy + 25y2)
Canceling Out :
9.2 Cancel out (4x2 + 10xy + 25y2) which appears on both sides of the fraction line.
Dividing Exponential Expressions :
9.3 Divide (2x + 5y)2 by (2x + 5y)3
The rule says : To divide exponential expressions which have the same base, subtract their exponents.
In our case, the common base is (2x+5y) and the exponents are :
2
and 3
The quotient is therefore, (2x+5y)(2-3) = (2x+5y)(-1)
Note that the quotient has a negative exponent.
Rewrite the quotient under the fraction line changing its exponent to be positive: 1/(2x+5y)1
Omit the '1' in the exponent altogether. Anything to the first power is the number itself so there is usually no reason to write down the '1
Final result :
2x - 5y
———————
2x + 5y
How did we do?
Please leave us feedback.